On universality of semigroup varieties
Archivum mathematicum, Tome 42 (2006) no. 4, pp. 357-386.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A category $K$ is called $\alpha $-determined if every set of non-isomorphic $K$-objects such that their endomorphism monoids are isomorphic has a cardinality less than $\alpha $. A quasivariety $Q$ is called $Q$-universal if the lattice of all subquasivarieties of any quasivariety of finite type is a homomorphic image of a sublattice of the lattice of all subquasivarieties of $Q$. We say that a variety $V$ is var-relatively alg-universal if there exists a proper subvariety $W$ of $V$ such that homomorphisms of $V$ whose image does not belong to $W$ contains a full subcategory isomorphic to the category of all graphs. A semigroup variety $V$ is nearly $J$-trivial if for every semigroup $S\in V$ any $ J$-class containing a group is a singleton. We prove that for a nearly $J$-trivial variety $V$ the following are equivalent: $V$ is $Q$-universal; $ V$ is var-relatively alg-universal; $V$ is $\alpha $-determined for no cardinal $\alpha $; $V$ contains at least one of the three specific semigroups. Dually, for a nearly $J$-trivial variety $V$ the following are equivalent: $V$ is $3$-determined; $V$ is not var-relatively alg-universal; the lattice of all subquasivarieties of $V$ is finite; $V$ is a subvariety of one of two special finitely generated varieties.
Classification : 08B15, 08C15, 18B15, 20M07, 20M99
Keywords: semigroup variety; band variety; full embedding; $f\!f$-alg-universality; determinacy; $Q$-universality
@article{ARM_2006__42_4_a2,
     author = {Demlov\'a, Marie and Koubek, V\'aclav},
     title = {On universality of semigroup varieties},
     journal = {Archivum mathematicum},
     pages = {357--386},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2006},
     mrnumber = {2283018},
     zbl = {1152.20046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_4_a2/}
}
TY  - JOUR
AU  - Demlová, Marie
AU  - Koubek, Václav
TI  - On universality of semigroup varieties
JO  - Archivum mathematicum
PY  - 2006
SP  - 357
EP  - 386
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2006__42_4_a2/
LA  - en
ID  - ARM_2006__42_4_a2
ER  - 
%0 Journal Article
%A Demlová, Marie
%A Koubek, Václav
%T On universality of semigroup varieties
%J Archivum mathematicum
%D 2006
%P 357-386
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2006__42_4_a2/
%G en
%F ARM_2006__42_4_a2
Demlová, Marie; Koubek, Václav. On universality of semigroup varieties. Archivum mathematicum, Tome 42 (2006) no. 4, pp. 357-386. http://geodesic.mathdoc.fr/item/ARM_2006__42_4_a2/