A note on the countable extensions of separable $p\sp {\omega+n}$-projective abelian $p$-groups
Archivum mathematicum, Tome 42 (2006) no. 3, pp. 251-254
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It is proved that if $G$ is a pure $p^{\omega + n}$-projective subgroup of the separable abelian $p$-group $A$ for $n\in {N}\cup \lbrace 0\rbrace $ such that $|A/G|\le \aleph _0$, then $A$ is $p^{\omega +n}$-projective as well. This generalizes results due to Irwin-Snabb-Cutler (CommentṀathU̇nivṠtṖauli, 1986) and the author (Arch. Math. (Brno), 2005).
Classification :
20K10
Keywords: countable extensions; separable groups; $p^{\omega +n}$-projective groups
Keywords: countable extensions; separable groups; $p^{\omega +n}$-projective groups
@article{ARM_2006__42_3_a6,
author = {Danchev, Peter},
title = {A note on the countable extensions of separable $p\sp {\omega+n}$-projective abelian $p$-groups},
journal = {Archivum mathematicum},
pages = {251--254},
publisher = {mathdoc},
volume = {42},
number = {3},
year = {2006},
mrnumber = {2260384},
zbl = {1152.20045},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_3_a6/}
}
TY - JOUR
AU - Danchev, Peter
TI - A note on the countable extensions of separable $p\sp {\omega+n}$-projective abelian $p$-groups
JO - Archivum mathematicum
PY - 2006
SP - 251
EP - 254
VL - 42
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ARM_2006__42_3_a6/
LA - en
ID - ARM_2006__42_3_a6
ER -
Danchev, Peter. A note on the countable extensions of separable $p\sp {\omega+n}$-projective abelian $p$-groups. Archivum mathematicum, Tome 42 (2006) no. 3, pp. 251-254. http://geodesic.mathdoc.fr/item/ARM_2006__42_3_a6/