A note on the countable extensions of separable $p\sp {\omega+n}$-projective abelian $p$-groups
Archivum mathematicum, Tome 42 (2006) no. 3, pp. 251-254.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is proved that if $G$ is a pure $p^{\omega + n}$-projective subgroup of the separable abelian $p$-group $A$ for $n\in {N}\cup \lbrace 0\rbrace $ such that $|A/G|\le \aleph _0$, then $A$ is $p^{\omega +n}$-projective as well. This generalizes results due to Irwin-Snabb-Cutler (CommentṀathU̇nivṠtṖauli, 1986) and the author (Arch. Math. (Brno), 2005).
Classification : 20K10
Keywords: countable extensions; separable groups; $p^{\omega +n}$-projective groups
@article{ARM_2006__42_3_a6,
     author = {Danchev, Peter},
     title = {A note on the countable extensions of separable $p\sp {\omega+n}$-projective abelian $p$-groups},
     journal = {Archivum mathematicum},
     pages = {251--254},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2006},
     mrnumber = {2260384},
     zbl = {1152.20045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_3_a6/}
}
TY  - JOUR
AU  - Danchev, Peter
TI  - A note on the countable extensions of separable $p\sp {\omega+n}$-projective abelian $p$-groups
JO  - Archivum mathematicum
PY  - 2006
SP  - 251
EP  - 254
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2006__42_3_a6/
LA  - en
ID  - ARM_2006__42_3_a6
ER  - 
%0 Journal Article
%A Danchev, Peter
%T A note on the countable extensions of separable $p\sp {\omega+n}$-projective abelian $p$-groups
%J Archivum mathematicum
%D 2006
%P 251-254
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2006__42_3_a6/
%G en
%F ARM_2006__42_3_a6
Danchev, Peter. A note on the countable extensions of separable $p\sp {\omega+n}$-projective abelian $p$-groups. Archivum mathematicum, Tome 42 (2006) no. 3, pp. 251-254. http://geodesic.mathdoc.fr/item/ARM_2006__42_3_a6/