On three equivalences concerning Ponomarev-systems
Archivum mathematicum, Tome 42 (2006) no. 3, pp. 239-246.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\lbrace {\mathcal P}_n\rbrace $ be a sequence of covers of a space $X$ such that $\lbrace st(x,{\mathcal P}_n)\rbrace $ is a network at $x$ in $X$ for each $x\in X$. For each $n\in \mathbb N$, let ${\mathcal P}_n=\lbrace P_{\beta }:\beta \in \Lambda _n\rbrace $ and $\Lambda _ n$ be endowed the discrete topology. Put $M=\lbrace b=(\beta _n)\in \Pi _{n\in \mathbb N}\Lambda _ n: \lbrace P_{\beta _n}\rbrace $ forms a network at some point $x_b\ in \ X\rbrace $ and $f:M\longrightarrow X$ by choosing $f(b)=x_b$ for each $b\in M$. In this paper, we prove that $f$ is a sequentially-quotient (resp. sequence-covering, compact-covering) mapping if and only if each $\mathcal {P}_n$ is a $cs^*$-cover (resp. $fcs$-cover, $cfp$-cover) of $X$. As a consequence of this result, we prove that $f$ is a sequentially-quotient, $s$-mapping if and only if it is a sequence-covering, $s$-mapping, where “$s$” can not be omitted.
Classification : 54E40
Keywords: Ponomarev-system; point-star network; $cs^*$-(resp. $fcs$-; $cfp$-)cover; sequentially-quotient (resp. sequence-covering; compact-covering) mapping
@article{ARM_2006__42_3_a4,
     author = {Ge, Ying},
     title = {On three equivalences concerning {Ponomarev-systems}},
     journal = {Archivum mathematicum},
     pages = {239--246},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2006},
     mrnumber = {2260382},
     zbl = {1164.54363},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_3_a4/}
}
TY  - JOUR
AU  - Ge, Ying
TI  - On three equivalences concerning Ponomarev-systems
JO  - Archivum mathematicum
PY  - 2006
SP  - 239
EP  - 246
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2006__42_3_a4/
LA  - en
ID  - ARM_2006__42_3_a4
ER  - 
%0 Journal Article
%A Ge, Ying
%T On three equivalences concerning Ponomarev-systems
%J Archivum mathematicum
%D 2006
%P 239-246
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2006__42_3_a4/
%G en
%F ARM_2006__42_3_a4
Ge, Ying. On three equivalences concerning Ponomarev-systems. Archivum mathematicum, Tome 42 (2006) no. 3, pp. 239-246. http://geodesic.mathdoc.fr/item/ARM_2006__42_3_a4/