On three equivalences concerning Ponomarev-systems
Archivum mathematicum, Tome 42 (2006) no. 3, pp. 239-246
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\lbrace {\mathcal P}_n\rbrace $ be a sequence of covers of a space $X$ such that $\lbrace st(x,{\mathcal P}_n)\rbrace $ is a network at $x$ in $X$ for each $x\in X$. For each $n\in \mathbb N$, let ${\mathcal P}_n=\lbrace P_{\beta }:\beta \in \Lambda _n\rbrace $ and $\Lambda _ n$ be endowed the discrete topology. Put $M=\lbrace b=(\beta _n)\in \Pi _{n\in \mathbb N}\Lambda _ n: \lbrace P_{\beta _n}\rbrace $ forms a network at some point $x_b\ in \ X\rbrace $ and $f:M\longrightarrow X$ by choosing $f(b)=x_b$ for each $b\in M$. In this paper, we prove that $f$ is a sequentially-quotient (resp. sequence-covering, compact-covering) mapping if and only if each $\mathcal {P}_n$ is a $cs^*$-cover (resp. $fcs$-cover, $cfp$-cover) of $X$. As a consequence of this result, we prove that $f$ is a sequentially-quotient, $s$-mapping if and only if it is a sequence-covering, $s$-mapping, where “$s$” can not be omitted.
Classification :
54E40
Keywords: Ponomarev-system; point-star network; $cs^*$-(resp. $fcs$-; $cfp$-)cover; sequentially-quotient (resp. sequence-covering; compact-covering) mapping
Keywords: Ponomarev-system; point-star network; $cs^*$-(resp. $fcs$-; $cfp$-)cover; sequentially-quotient (resp. sequence-covering; compact-covering) mapping
@article{ARM_2006__42_3_a4,
author = {Ge, Ying},
title = {On three equivalences concerning {Ponomarev-systems}},
journal = {Archivum mathematicum},
pages = {239--246},
publisher = {mathdoc},
volume = {42},
number = {3},
year = {2006},
mrnumber = {2260382},
zbl = {1164.54363},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_3_a4/}
}
Ge, Ying. On three equivalences concerning Ponomarev-systems. Archivum mathematicum, Tome 42 (2006) no. 3, pp. 239-246. http://geodesic.mathdoc.fr/item/ARM_2006__42_3_a4/