Periodic solutions for differential inclusions in ${\Bbb R}^N$
Archivum mathematicum, Tome 42 (2006) no. 2, pp. 115-123
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider first order periodic differential inclusions in $\mathbb {R}^N$. The presence of a subdifferential term incorporates in our framework differential variational inequalities in $\mathbb {R}^N$. We establish the existence of extremal periodic solutions and we also obtain existence results for the “convex” and “nonconvex”problems.
Classification :
34A60, 34C25
Keywords: multifunction; convex subdifferential; extremal periodic solution; Moreanu-Yosida approximation.
Keywords: multifunction; convex subdifferential; extremal periodic solution; Moreanu-Yosida approximation.
@article{ARM_2006__42_2_a1,
author = {Filippakis, Michael E. and Papageorgiou, Nikolaos S.},
title = {Periodic solutions for differential inclusions in ${\Bbb R}^N$},
journal = {Archivum mathematicum},
pages = {115--123},
publisher = {mathdoc},
volume = {42},
number = {2},
year = {2006},
mrnumber = {2240188},
zbl = {1164.34320},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_2_a1/}
}
TY - JOUR
AU - Filippakis, Michael E.
AU - Papageorgiou, Nikolaos S.
TI - Periodic solutions for differential inclusions in ${\Bbb R}^N$
JO - Archivum mathematicum
PY - 2006
SP - 115
EP - 123
VL - 42
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ARM_2006__42_2_a1/
LA - en
ID - ARM_2006__42_2_a1
ER -
Filippakis, Michael E.; Papageorgiou, Nikolaos S. Periodic solutions for differential inclusions in ${\Bbb R}^N$. Archivum mathematicum, Tome 42 (2006) no. 2, pp. 115-123. http://geodesic.mathdoc.fr/item/ARM_2006__42_2_a1/