Universality of separoids
Archivum mathematicum, Tome 42 (2006) no. 1, pp. 85-101.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A separoid is a symmetric relation $\dagger \subset {2^S\atopwithdelims ()2}$ defined on disjoint pairs of subsets of a given set $S$ such that it is closed as a filter in the canonical partial order induced by the inclusion (i.e., $A\dagger B\preceq A^{\prime }\dagger B^{\prime }\iff A\subseteq A^{\prime }$ and $B\subseteq B^{\prime }$). We introduce the notion of homomorphism as a map which preserve the so-called “minimal Radon partitions” and show that separoids, endowed with these maps, admits an embedding from the category of all finite graphs. This proves that separoids constitute a countable universal partial order. Furthermore, by embedding also all hypergraphs (all set systems) into such a category, we prove a “stronger” universality property. We further study some structural aspects of the category of separoids. We completely solve the density problem for (all) separoids as well as for separoids of points. We also generalise the classic Radon’s theorem in a categorical setting as well as Hedetniemi’s product conjecture (which can be proved for oriented matroids).
Classification : 05B35
Keywords: graphs; separoids; homomorphisms; universality; density; Radon’s theorem; oriented matroids; Hedetniemi’s conjecture
@article{ARM_2006__42_1_a8,
     author = {Ne\v{s}et\v{r}il, Jaroslav and Strausz, Ricardo},
     title = {Universality of separoids},
     journal = {Archivum mathematicum},
     pages = {85--101},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2006},
     mrnumber = {2227115},
     zbl = {1164.05468},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_1_a8/}
}
TY  - JOUR
AU  - Nešetřil, Jaroslav
AU  - Strausz, Ricardo
TI  - Universality of separoids
JO  - Archivum mathematicum
PY  - 2006
SP  - 85
EP  - 101
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2006__42_1_a8/
LA  - en
ID  - ARM_2006__42_1_a8
ER  - 
%0 Journal Article
%A Nešetřil, Jaroslav
%A Strausz, Ricardo
%T Universality of separoids
%J Archivum mathematicum
%D 2006
%P 85-101
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2006__42_1_a8/
%G en
%F ARM_2006__42_1_a8
Nešetřil, Jaroslav; Strausz, Ricardo. Universality of separoids. Archivum mathematicum, Tome 42 (2006) no. 1, pp. 85-101. http://geodesic.mathdoc.fr/item/ARM_2006__42_1_a8/