On generalized “ham sandwich” theorems
Archivum mathematicum, Tome 42 (2006) no. 1, pp. 25-30.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: Let $A_1,\ldots ,A_m\subseteq \mathbb {R}^n$ be subsets with finite Lebesgue measure. Then, for any sequence $f_0,\ldots ,f_m$ of $\mathbb {R}$-linearly independent polynomials in the polynomial ring $\mathbb {R}[X_1,\ldots ,X_n]$ there are real numbers $\lambda _0,\ldots ,\lambda _m$, not all zero, such that the real affine variety $\lbrace x\in \mathbb {R}^n;\,\lambda _0f_0(x)+\cdots +\lambda _mf_m(x)=0 \rbrace $ simultaneously bisects each of subsets $A_k$, $k=1,\ldots ,m$. Then some its applications are studied.
Classification : 12D10, 14P05, 58C07
Keywords: Lebesgue (signed) measure; polynomial; random vector; real affine variety
@article{ARM_2006__42_1_a2,
     author = {Golasi\'nski, Marek},
     title = {On generalized {\textquotedblleft}ham sandwich{\textquotedblright} theorems},
     journal = {Archivum mathematicum},
     pages = {25--30},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2006},
     mrnumber = {2227109},
     zbl = {1164.58312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_1_a2/}
}
TY  - JOUR
AU  - Golasiński, Marek
TI  - On generalized “ham sandwich” theorems
JO  - Archivum mathematicum
PY  - 2006
SP  - 25
EP  - 30
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2006__42_1_a2/
LA  - en
ID  - ARM_2006__42_1_a2
ER  - 
%0 Journal Article
%A Golasiński, Marek
%T On generalized “ham sandwich” theorems
%J Archivum mathematicum
%D 2006
%P 25-30
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2006__42_1_a2/
%G en
%F ARM_2006__42_1_a2
Golasiński, Marek. On generalized “ham sandwich” theorems. Archivum mathematicum, Tome 42 (2006) no. 1, pp. 25-30. http://geodesic.mathdoc.fr/item/ARM_2006__42_1_a2/