Fixed points and best approximation in Menger convex metric spaces
Archivum mathematicum, Tome 41 (2005) no. 4, pp. 389-397
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We obtain necessary conditions for the existence of fixed point and approximate fixed point of nonexpansive and quasi nonexpansive maps defined on a compact convex subset of a uniformly convex complete metric space. We obtain results on best approximation as a fixed point in a strictly convex metric space.
Classification :
47H09, 47H10, 54H25
Keywords: fixed point; convex metric space; uniformly convex metric space; strictly convex metric space; best approximation; nonexpansive map
Keywords: fixed point; convex metric space; uniformly convex metric space; strictly convex metric space; best approximation; nonexpansive map
@article{ARM_2005__41_4_a3,
author = {Beg, Ismat and Abbas, Mujahid},
title = {Fixed points and best approximation in {Menger} convex metric spaces},
journal = {Archivum mathematicum},
pages = {389--397},
publisher = {mathdoc},
volume = {41},
number = {4},
year = {2005},
mrnumber = {2195492},
zbl = {1109.47047},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2005__41_4_a3/}
}
Beg, Ismat; Abbas, Mujahid. Fixed points and best approximation in Menger convex metric spaces. Archivum mathematicum, Tome 41 (2005) no. 4, pp. 389-397. http://geodesic.mathdoc.fr/item/ARM_2005__41_4_a3/