On the degeneration of harmonic sequences from surfaces into complex Grassmann manifolds
Archivum mathematicum, Tome 41 (2005) no. 3, pp. 273-280
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $f:M\rightarrow G(m,n)$ be a harmonic map from surface into complex Grassmann manifold. In this paper, some sufficient conditions for the harmonic sequence generated by $f$ to have degenerate $\partial ^{\prime }$-transform or $\partial ^{\prime \prime }$-transform are given.
Classification :
53B30, 53C42, 53C43, 58E20
Keywords: complex Grassmann manifold; harmonic map; harmonic sequence; genus; the generalized Frenet formulae
Keywords: complex Grassmann manifold; harmonic map; harmonic sequence; genus; the generalized Frenet formulae
@article{ARM_2005__41_3_a3,
author = {Ye, Bing Wu},
title = {On the degeneration of harmonic sequences from surfaces into complex {Grassmann} manifolds},
journal = {Archivum mathematicum},
pages = {273--280},
publisher = {mathdoc},
volume = {41},
number = {3},
year = {2005},
mrnumber = {2188383},
zbl = {1114.53058},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2005__41_3_a3/}
}
Ye, Bing Wu. On the degeneration of harmonic sequences from surfaces into complex Grassmann manifolds. Archivum mathematicum, Tome 41 (2005) no. 3, pp. 273-280. http://geodesic.mathdoc.fr/item/ARM_2005__41_3_a3/