Countable extensions of torsion Abelian groups
Archivum mathematicum, Tome 41 (2005) no. 3, pp. 265-272.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Suppose $A$ is an abelian torsion group with a subgroup $G$ such that $A/G$ is countable that is, in other words, $A$ is a torsion countable abelian extension of $G$. A problem of some group-theoretic interest is that of whether $G \in \mathbb K$, a class of abelian groups, does imply that $A\in \mathbb K$. The aim of the present paper is to settle the question for certain kinds of groups, thus extending a classical result due to Wallace (J. Algebra, 1981) proved when $\mathbb K$ coincides with the class of all totally projective $p$-groups.
Classification : 20K10, 20K35
Keywords: countable factor-groups; $\Sigma $-groups; $\sigma $-summable groups; summable groups; $p^{\omega + n}$-projective groups
@article{ARM_2005__41_3_a2,
     author = {Danchev, Peter},
     title = {Countable extensions of torsion {Abelian} groups},
     journal = {Archivum mathematicum},
     pages = {265--272},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2005},
     mrnumber = {2188382},
     zbl = {1114.20030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005__41_3_a2/}
}
TY  - JOUR
AU  - Danchev, Peter
TI  - Countable extensions of torsion Abelian groups
JO  - Archivum mathematicum
PY  - 2005
SP  - 265
EP  - 272
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2005__41_3_a2/
LA  - en
ID  - ARM_2005__41_3_a2
ER  - 
%0 Journal Article
%A Danchev, Peter
%T Countable extensions of torsion Abelian groups
%J Archivum mathematicum
%D 2005
%P 265-272
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2005__41_3_a2/
%G en
%F ARM_2005__41_3_a2
Danchev, Peter. Countable extensions of torsion Abelian groups. Archivum mathematicum, Tome 41 (2005) no. 3, pp. 265-272. http://geodesic.mathdoc.fr/item/ARM_2005__41_3_a2/