On generalized q.f.d. modules
Archivum mathematicum, Tome 41 (2005) no. 3, pp. 243-251.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A right $R$-module $M$ is called a generalized q.f.d. module if every M-singular quotient has finitely generated socle. In this note we give several characterizations to this class of modules by means of weak injectivity, tightness, and weak tightness that generalizes the results in [sanh1], Theorem 3. In particular, it is shown that a module $M$ is g.q.f.d. iff every direct sum of $M$-singular $M$-injective modules in ${\sigma [M]}$ is weakly injective iff every direct sum of $M$-singular weakly tight is weakly tight iff every direct sum of the injective hulls of $M$-singular simples is weakly $R$-tight.
Classification : 16D10, 16D50, 16D60, 16D70, 16D90
Keywords: tight; weakly tight; weakly injective; q.f.d.; generalized q.f.d. modules; generalized weakly semisimple
@article{ARM_2005__41_3_a0,
     author = {Saleh, Mohammad and Jain, S. K. and L\'opez-Permouth, S. R.},
     title = {On generalized q.f.d. modules},
     journal = {Archivum mathematicum},
     pages = {243--251},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2005},
     mrnumber = {2188380},
     zbl = {1114.16004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005__41_3_a0/}
}
TY  - JOUR
AU  - Saleh, Mohammad
AU  - Jain, S. K.
AU  - López-Permouth, S. R.
TI  - On generalized q.f.d. modules
JO  - Archivum mathematicum
PY  - 2005
SP  - 243
EP  - 251
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2005__41_3_a0/
LA  - en
ID  - ARM_2005__41_3_a0
ER  - 
%0 Journal Article
%A Saleh, Mohammad
%A Jain, S. K.
%A López-Permouth, S. R.
%T On generalized q.f.d. modules
%J Archivum mathematicum
%D 2005
%P 243-251
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2005__41_3_a0/
%G en
%F ARM_2005__41_3_a0
Saleh, Mohammad; Jain, S. K.; López-Permouth, S. R. On generalized q.f.d. modules. Archivum mathematicum, Tome 41 (2005) no. 3, pp. 243-251. http://geodesic.mathdoc.fr/item/ARM_2005__41_3_a0/