On left $(\theta,\varphi)$-derivations of prime rings
Archivum mathematicum, Tome 41 (2005) no. 2, pp. 157-166.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a $2$-torsion free prime ring. Suppose that $\theta , \phi $ are automorphisms of $R$. In the present paper it is established that if $R$ admits a nonzero Jordan left $(\theta ,\theta )$-derivation, then $R$ is commutative. Further, as an application of this resul it is shown that every Jordan left $(\theta ,\theta )$-derivation on $R$ is a left $(\theta ,\theta )$-derivation on $R$. Finally, in case of an arbitrary prime ring it is proved that if $R$ admits a left $(\theta ,\phi )$-derivation which acts also as a homomorphism (resp. anti-homomorphism) on a nonzero ideal of $R$, then $d=0$ on $R$.
Classification : 16N60, 16W25
Keywords: Lie ideals; prime rings; derivations; Jordan left derivations; left derivations; torsion free rings
@article{ARM_2005__41_2_a3,
     author = {Ashraf, Mohammad},
     title = {On left $(\theta,\varphi)$-derivations of prime rings},
     journal = {Archivum mathematicum},
     pages = {157--166},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2005},
     mrnumber = {2164665},
     zbl = {1114.16031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005__41_2_a3/}
}
TY  - JOUR
AU  - Ashraf, Mohammad
TI  - On left $(\theta,\varphi)$-derivations of prime rings
JO  - Archivum mathematicum
PY  - 2005
SP  - 157
EP  - 166
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2005__41_2_a3/
LA  - en
ID  - ARM_2005__41_2_a3
ER  - 
%0 Journal Article
%A Ashraf, Mohammad
%T On left $(\theta,\varphi)$-derivations of prime rings
%J Archivum mathematicum
%D 2005
%P 157-166
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2005__41_2_a3/
%G en
%F ARM_2005__41_2_a3
Ashraf, Mohammad. On left $(\theta,\varphi)$-derivations of prime rings. Archivum mathematicum, Tome 41 (2005) no. 2, pp. 157-166. http://geodesic.mathdoc.fr/item/ARM_2005__41_2_a3/