Asymptotic stability for sets of polynomials
Archivum mathematicum, Tome 41 (2005) no. 2, pp. 151-155.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We introduce the concept of asymptotic stability for a set of complex functions analytic around the origin, implicitly contained in an earlier paper of the first mentioned author (“Finite group actions and asymptotic expansion of $e^{P(z)}$", Combinatorica 17 (1997), 523 – 554). As a consequence of our main result we find that the collection of entire functions $\exp (\mathfrak {P})$ with $\mathfrak {P}$ the set of all real polynomials $P(z)$ satisfying Hayman’s condition $[z^n]\exp (P(z))>0\,(n\ge n_0)$ is asymptotically stable. This answers a question raised in loc. cit.
Classification : 30B10, 30D15
Keywords: power series; coefficients; asymptotic expansion
@article{ARM_2005__41_2_a2,
     author = {M\"uller, Thomas W. and Schlage-Puchta, Jan-Christoph},
     title = {Asymptotic stability for sets of polynomials},
     journal = {Archivum mathematicum},
     pages = {151--155},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2005},
     mrnumber = {2164664},
     zbl = {1109.30001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005__41_2_a2/}
}
TY  - JOUR
AU  - Müller, Thomas W.
AU  - Schlage-Puchta, Jan-Christoph
TI  - Asymptotic stability for sets of polynomials
JO  - Archivum mathematicum
PY  - 2005
SP  - 151
EP  - 155
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2005__41_2_a2/
LA  - en
ID  - ARM_2005__41_2_a2
ER  - 
%0 Journal Article
%A Müller, Thomas W.
%A Schlage-Puchta, Jan-Christoph
%T Asymptotic stability for sets of polynomials
%J Archivum mathematicum
%D 2005
%P 151-155
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2005__41_2_a2/
%G en
%F ARM_2005__41_2_a2
Müller, Thomas W.; Schlage-Puchta, Jan-Christoph. Asymptotic stability for sets of polynomials. Archivum mathematicum, Tome 41 (2005) no. 2, pp. 151-155. http://geodesic.mathdoc.fr/item/ARM_2005__41_2_a2/