On natural metrics on tangent bundles of Riemannian manifolds
Archivum mathematicum, Tome 41 (2005) no. 1, pp. 71-92
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
There is a class of metrics on the tangent bundle $TM$ of a Riemannian manifold $(M,g)$ (oriented , or non-oriented, respectively), which are ’naturally constructed’ from the base metric $g$ [Kow-Sek1]. We call them “$g$-natural metrics" on $TM$. To our knowledge, the geometric properties of these general metrics have not been studied yet. In this paper, generalizing a process of Musso-Tricerri (cf. [Mus-Tri]) of finding Riemannian metrics on $TM$ from some quadratic forms on $OM \times \mathbb {R}^m$ to find metrics (not necessary Riemannian) on $TM$, we prove that all $g$-natural metrics on $TM$ can be obtained by Musso-Tricerri’s generalized scheme. We calculate also the Levi-Civita connection of Riemannian $g$-natural metrics on $TM$. As application, we sort out all Riemannian $g$-natural metrics with the following properties, respectively: 1) The fibers of $TM$ are totally geodesic. 2) The geodesic flow on $TM$ is incompressible. We shall limit ourselves to the non-oriented situation.
Classification :
53A55, 53B20, 53C07, 53C20, 53D25
Keywords: Riemannian manifold; tangent bundle; natural operation; $g$-natural metric; Geodesic flow; incompressibility
Keywords: Riemannian manifold; tangent bundle; natural operation; $g$-natural metric; Geodesic flow; incompressibility
@article{ARM_2005__41_1_a6,
author = {Abbassi, Mohamed Tahar Kadaoui and Sarih, Ma\^ati},
title = {On natural metrics on tangent bundles of {Riemannian} manifolds},
journal = {Archivum mathematicum},
pages = {71--92},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {2005},
mrnumber = {2142144},
zbl = {1114.53015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2005__41_1_a6/}
}
TY - JOUR AU - Abbassi, Mohamed Tahar Kadaoui AU - Sarih, Maâti TI - On natural metrics on tangent bundles of Riemannian manifolds JO - Archivum mathematicum PY - 2005 SP - 71 EP - 92 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2005__41_1_a6/ LA - en ID - ARM_2005__41_1_a6 ER -
Abbassi, Mohamed Tahar Kadaoui; Sarih, Maâti. On natural metrics on tangent bundles of Riemannian manifolds. Archivum mathematicum, Tome 41 (2005) no. 1, pp. 71-92. http://geodesic.mathdoc.fr/item/ARM_2005__41_1_a6/