On natural metrics on tangent bundles of Riemannian manifolds
Archivum mathematicum, Tome 41 (2005) no. 1, pp. 71-92.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

There is a class of metrics on the tangent bundle $TM$ of a Riemannian manifold $(M,g)$ (oriented , or non-oriented, respectively), which are ’naturally constructed’ from the base metric $g$ [Kow-Sek1]. We call them “$g$-natural metrics" on $TM$. To our knowledge, the geometric properties of these general metrics have not been studied yet. In this paper, generalizing a process of Musso-Tricerri (cf. [Mus-Tri]) of finding Riemannian metrics on $TM$ from some quadratic forms on $OM \times \mathbb {R}^m$ to find metrics (not necessary Riemannian) on $TM$, we prove that all $g$-natural metrics on $TM$ can be obtained by Musso-Tricerri’s generalized scheme. We calculate also the Levi-Civita connection of Riemannian $g$-natural metrics on $TM$. As application, we sort out all Riemannian $g$-natural metrics with the following properties, respectively: 1) The fibers of $TM$ are totally geodesic. 2) The geodesic flow on $TM$ is incompressible. We shall limit ourselves to the non-oriented situation.
Classification : 53A55, 53B20, 53C07, 53C20, 53D25
Keywords: Riemannian manifold; tangent bundle; natural operation; $g$-natural metric; Geodesic flow; incompressibility
@article{ARM_2005__41_1_a6,
     author = {Abbassi, Mohamed Tahar Kadaoui and Sarih, Ma\^ati},
     title = {On natural metrics on tangent bundles of {Riemannian} manifolds},
     journal = {Archivum mathematicum},
     pages = {71--92},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2005},
     mrnumber = {2142144},
     zbl = {1114.53015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005__41_1_a6/}
}
TY  - JOUR
AU  - Abbassi, Mohamed Tahar Kadaoui
AU  - Sarih, Maâti
TI  - On natural metrics on tangent bundles of Riemannian manifolds
JO  - Archivum mathematicum
PY  - 2005
SP  - 71
EP  - 92
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2005__41_1_a6/
LA  - en
ID  - ARM_2005__41_1_a6
ER  - 
%0 Journal Article
%A Abbassi, Mohamed Tahar Kadaoui
%A Sarih, Maâti
%T On natural metrics on tangent bundles of Riemannian manifolds
%J Archivum mathematicum
%D 2005
%P 71-92
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2005__41_1_a6/
%G en
%F ARM_2005__41_1_a6
Abbassi, Mohamed Tahar Kadaoui; Sarih, Maâti. On natural metrics on tangent bundles of Riemannian manifolds. Archivum mathematicum, Tome 41 (2005) no. 1, pp. 71-92. http://geodesic.mathdoc.fr/item/ARM_2005__41_1_a6/