Exploring invariant linear codes through generators and centralizers
Archivum mathematicum, Tome 41 (2005) no. 1, pp. 17-26.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We investigate a $H$-invariant linear code $C$ over the finite field $F_{p}$ where $H$ is a group of linear transformations. We show that if $H$ is a noncyclic abelian group and $(\vert {H}\vert ,p)=1$, then the code $C$ is the sum of the centralizer codes $C_{c}(h)$ where $h$ is a nonidentity element of $H$. Moreover if $A$ is subgroup of $H$ such that $A\cong Z_{q} \times Z_{q}$, $q\ne p$, then dim $C$ is known when the dimension of $C_{c}(K)$ is known for each subgroup $K\ne 1$ of $A$. In the last few sections we restrict our scope of investigation to a special class of invariant codes, namely affine codes and their centralizers. New results concerning the dimensions of these codes and their centralizers are obtained.
Classification : 05E20, 94B05
Keywords: invariant code; centralizer; affine plane
@article{ARM_2005__41_1_a2,
     author = {Dey, Partha Pratim},
     title = {Exploring invariant linear codes through generators and centralizers},
     journal = {Archivum mathematicum},
     pages = {17--26},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2005},
     mrnumber = {2142140},
     zbl = {1115.05097},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005__41_1_a2/}
}
TY  - JOUR
AU  - Dey, Partha Pratim
TI  - Exploring invariant linear codes through generators and centralizers
JO  - Archivum mathematicum
PY  - 2005
SP  - 17
EP  - 26
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2005__41_1_a2/
LA  - en
ID  - ARM_2005__41_1_a2
ER  - 
%0 Journal Article
%A Dey, Partha Pratim
%T Exploring invariant linear codes through generators and centralizers
%J Archivum mathematicum
%D 2005
%P 17-26
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2005__41_1_a2/
%G en
%F ARM_2005__41_1_a2
Dey, Partha Pratim. Exploring invariant linear codes through generators and centralizers. Archivum mathematicum, Tome 41 (2005) no. 1, pp. 17-26. http://geodesic.mathdoc.fr/item/ARM_2005__41_1_a2/