Projective reparametrization of homogeneous curves
Archivum mathematicum, Tome 41 (2005) no. 1, pp. 129-133.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the conditions when locally homogeneous curves in homogeneous spaces admit a natural projective parameter. In particular, we prove that this is always the case for trajectories of homogeneous nilpotent elements in parabolic spaces. On algebraic level this corresponds to the generalization of Morozov–Jacobson theorem to graded semisimple Lie algebras.
Classification : 17B20, 17B70, 53C30
Keywords: homogeneous submanifold; symmetry algebra; nilpotent elements; $sl_2$-tripple
@article{ARM_2005__41_1_a11,
     author = {Doubrov, Boris},
     title = {Projective reparametrization of homogeneous curves},
     journal = {Archivum mathematicum},
     pages = {129--133},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2005},
     mrnumber = {2142149},
     zbl = {1122.53029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2005__41_1_a11/}
}
TY  - JOUR
AU  - Doubrov, Boris
TI  - Projective reparametrization of homogeneous curves
JO  - Archivum mathematicum
PY  - 2005
SP  - 129
EP  - 133
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2005__41_1_a11/
LA  - en
ID  - ARM_2005__41_1_a11
ER  - 
%0 Journal Article
%A Doubrov, Boris
%T Projective reparametrization of homogeneous curves
%J Archivum mathematicum
%D 2005
%P 129-133
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2005__41_1_a11/
%G en
%F ARM_2005__41_1_a11
Doubrov, Boris. Projective reparametrization of homogeneous curves. Archivum mathematicum, Tome 41 (2005) no. 1, pp. 129-133. http://geodesic.mathdoc.fr/item/ARM_2005__41_1_a11/