A classification of rational languages by semilattice-ordered monoids
Archivum mathematicum, Tome 40 (2004) no. 4, pp. 395-406.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove here an Eilenberg type theorem: the so-called conjunctive varieties of rational languages correspond to the pseudovarieties of finite semilattice-ordered monoids. Taking complements of members of a conjunctive variety of languages we get a so-called disjunctive variety. We present here a non-trivial example of such a variety together with an equational characterization of the corresponding pseudovariety.
Classification : 06F05, 08A70, 16Y60, 20M07, 68Q70
Keywords: syntactic semilattice-ordered monoid; conjunctive varieties of rational languages
@article{ARM_2004__40_4_a7,
     author = {Pol\'ak, Libor},
     title = {A classification of rational languages by semilattice-ordered monoids},
     journal = {Archivum mathematicum},
     pages = {395--406},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2004},
     mrnumber = {2129961},
     zbl = {1112.68098},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2004__40_4_a7/}
}
TY  - JOUR
AU  - Polák, Libor
TI  - A classification of rational languages by semilattice-ordered monoids
JO  - Archivum mathematicum
PY  - 2004
SP  - 395
EP  - 406
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2004__40_4_a7/
LA  - en
ID  - ARM_2004__40_4_a7
ER  - 
%0 Journal Article
%A Polák, Libor
%T A classification of rational languages by semilattice-ordered monoids
%J Archivum mathematicum
%D 2004
%P 395-406
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2004__40_4_a7/
%G en
%F ARM_2004__40_4_a7
Polák, Libor. A classification of rational languages by semilattice-ordered monoids. Archivum mathematicum, Tome 40 (2004) no. 4, pp. 395-406. http://geodesic.mathdoc.fr/item/ARM_2004__40_4_a7/