Ideal-theoretic characterizations of valuation and Prüfer monoids
Archivum mathematicum, Tome 40 (2004) no. 1, pp. 41-46.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is well known that an integral domain is a valuation domain if and only if it possesses only one finitary ideal system (Lorenzen $r$-system of finite character). We prove an analogous result for root-closed (cancellative) monoids and apply it to give several new characterizations of Prüfer (multiplication) monoids and integral domains.
Classification : 13A15, 13F05, 20M12, 20M14, 20M25
Keywords: valuation monoids; Prüfer domains
@article{ARM_2004__40_1_a4,
     author = {Halter-Koch, Franz},
     title = {Ideal-theoretic characterizations of valuation and {Pr\"ufer} monoids},
     journal = {Archivum mathematicum},
     pages = {41--46},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2004},
     mrnumber = {2054871},
     zbl = {1114.20041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2004__40_1_a4/}
}
TY  - JOUR
AU  - Halter-Koch, Franz
TI  - Ideal-theoretic characterizations of valuation and Prüfer monoids
JO  - Archivum mathematicum
PY  - 2004
SP  - 41
EP  - 46
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2004__40_1_a4/
LA  - en
ID  - ARM_2004__40_1_a4
ER  - 
%0 Journal Article
%A Halter-Koch, Franz
%T Ideal-theoretic characterizations of valuation and Prüfer monoids
%J Archivum mathematicum
%D 2004
%P 41-46
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2004__40_1_a4/
%G en
%F ARM_2004__40_1_a4
Halter-Koch, Franz. Ideal-theoretic characterizations of valuation and Prüfer monoids. Archivum mathematicum, Tome 40 (2004) no. 1, pp. 41-46. http://geodesic.mathdoc.fr/item/ARM_2004__40_1_a4/