A singular version of Leighton's comparison theorem for forced quasilinear second order differential equations
Archivum mathematicum, Tome 39 (2003) no. 4, pp. 335-345
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We extend the classical Leighton comparison theorem to a class of quasilinear forced second order differential equations \[ (r(t)|x^{\prime }|^{\alpha -2}x^{\prime })^{\prime }+c(t)|x|^{\beta -2}x=f(t)\,,\quad 1\alpha \le \beta ,\ t\in I=(a,b)\,, \qquad \mathrm {(*)}\] where the endpoints $a$, $b$ of the interval $I$ are allowed to be singular. Some applications of this statement in the oscillation theory of (*) are suggested.
Classification :
34C10
Keywords: Picone’s identity; forced quasilinear equation; principal solution
Keywords: Picone’s identity; forced quasilinear equation; principal solution
@article{ARM_2003__39_4_a8,
author = {Do\v{s}l\'y, Ond\v{r}ej and Jaro\v{s}, Jaroslav},
title = {A singular version of {Leighton's} comparison theorem for forced quasilinear second order differential equations},
journal = {Archivum mathematicum},
pages = {335--345},
publisher = {mathdoc},
volume = {39},
number = {4},
year = {2003},
mrnumber = {2032106},
zbl = {1116.34316},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2003__39_4_a8/}
}
TY - JOUR AU - Došlý, Ondřej AU - Jaroš, Jaroslav TI - A singular version of Leighton's comparison theorem for forced quasilinear second order differential equations JO - Archivum mathematicum PY - 2003 SP - 335 EP - 345 VL - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2003__39_4_a8/ LA - en ID - ARM_2003__39_4_a8 ER -
%0 Journal Article %A Došlý, Ondřej %A Jaroš, Jaroslav %T A singular version of Leighton's comparison theorem for forced quasilinear second order differential equations %J Archivum mathematicum %D 2003 %P 335-345 %V 39 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ARM_2003__39_4_a8/ %G en %F ARM_2003__39_4_a8
Došlý, Ondřej; Jaroš, Jaroslav. A singular version of Leighton's comparison theorem for forced quasilinear second order differential equations. Archivum mathematicum, Tome 39 (2003) no. 4, pp. 335-345. http://geodesic.mathdoc.fr/item/ARM_2003__39_4_a8/