On the $H$-property of some Banach sequence spaces
Archivum mathematicum, Tome 39 (2003) no. 4, pp. 309-316
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we define a generalized Cesàro sequence space $\operatorname{ces\,}(p)$ and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space $\operatorname{ces\,}(p)$ posses property (H) and property (G), and it is rotund, where $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in N$.
Classification :
46B20, 46B45
Keywords: H-property; property (G); Cesàro sequence spaces; Luxemburg norm
Keywords: H-property; property (G); Cesàro sequence spaces; Luxemburg norm
@article{ARM_2003__39_4_a6,
author = {Suantai, Suthep},
title = {On the $H$-property of some {Banach} sequence spaces},
journal = {Archivum mathematicum},
pages = {309--316},
publisher = {mathdoc},
volume = {39},
number = {4},
year = {2003},
mrnumber = {2032104},
zbl = {1115.46012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2003__39_4_a6/}
}
Suantai, Suthep. On the $H$-property of some Banach sequence spaces. Archivum mathematicum, Tome 39 (2003) no. 4, pp. 309-316. http://geodesic.mathdoc.fr/item/ARM_2003__39_4_a6/