Existence for nonconvex integral inclusions via fixed points
Archivum mathematicum, Tome 39 (2003) no. 4, pp. 293-298
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider a nonconvex integral inclusion and we prove a Filippov type existence theorem by using an appropiate norm on the space of selections of the multifunction and a contraction principle for set-valued maps.
Classification :
34A60, 45G10, 45N05, 47N20
Keywords: integral inclusions; contractive set-valued maps; fixed point
Keywords: integral inclusions; contractive set-valued maps; fixed point
@article{ARM_2003__39_4_a4,
author = {Cernea, Aurelian},
title = {Existence for nonconvex integral inclusions via fixed points},
journal = {Archivum mathematicum},
pages = {293--298},
publisher = {mathdoc},
volume = {39},
number = {4},
year = {2003},
mrnumber = {2032102},
zbl = {1113.45014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2003__39_4_a4/}
}
Cernea, Aurelian. Existence for nonconvex integral inclusions via fixed points. Archivum mathematicum, Tome 39 (2003) no. 4, pp. 293-298. http://geodesic.mathdoc.fr/item/ARM_2003__39_4_a4/