The complex geometry of an integrable system
Archivum mathematicum, Tome 39 (2003) no. 4, pp. 257-270
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, a finite dimensional algebraic completely integrable system is considered. We show that the intersection of levels of integrals completes into an abelian surface (a two dimensional complex algebraic torus) of polarization $\left( 2,8\right) $ and that the flow of the system can be linearized on it.
Classification :
14H70, 37J35, 70G55, 70H06
Keywords: integrable systems; curves; abelian varieties
Keywords: integrable systems; curves; abelian varieties
@article{ARM_2003__39_4_a0,
author = {Lesfari, Ahmed},
title = {The complex geometry of an integrable system},
journal = {Archivum mathematicum},
pages = {257--270},
publisher = {mathdoc},
volume = {39},
number = {4},
year = {2003},
mrnumber = {2028736},
zbl = {1110.70022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2003__39_4_a0/}
}
Lesfari, Ahmed. The complex geometry of an integrable system. Archivum mathematicum, Tome 39 (2003) no. 4, pp. 257-270. http://geodesic.mathdoc.fr/item/ARM_2003__39_4_a0/