The complex geometry of an integrable system
Archivum mathematicum, Tome 39 (2003) no. 4, pp. 257-270.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, a finite dimensional algebraic completely integrable system is considered. We show that the intersection of levels of integrals completes into an abelian surface (a two dimensional complex algebraic torus) of polarization $\left( 2,8\right) $ and that the flow of the system can be linearized on it.
Classification : 14H70, 37J35, 70G55, 70H06
Keywords: integrable systems; curves; abelian varieties
@article{ARM_2003__39_4_a0,
     author = {Lesfari, Ahmed},
     title = {The complex geometry of an integrable system},
     journal = {Archivum mathematicum},
     pages = {257--270},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2003},
     mrnumber = {2028736},
     zbl = {1110.70022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003__39_4_a0/}
}
TY  - JOUR
AU  - Lesfari, Ahmed
TI  - The complex geometry of an integrable system
JO  - Archivum mathematicum
PY  - 2003
SP  - 257
EP  - 270
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2003__39_4_a0/
LA  - en
ID  - ARM_2003__39_4_a0
ER  - 
%0 Journal Article
%A Lesfari, Ahmed
%T The complex geometry of an integrable system
%J Archivum mathematicum
%D 2003
%P 257-270
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2003__39_4_a0/
%G en
%F ARM_2003__39_4_a0
Lesfari, Ahmed. The complex geometry of an integrable system. Archivum mathematicum, Tome 39 (2003) no. 4, pp. 257-270. http://geodesic.mathdoc.fr/item/ARM_2003__39_4_a0/