The canonical tensor fields of type $(1,1)$ on $(J^r(\odot ^2 T^{\ast }))^{\ast }$
Archivum mathematicum, Tome 39 (2003) no. 3, pp. 247-256.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that every natural affinor on $(J^r( \odot ^2 T^{\ast }))^{\ast }(M)$ is proportional to the identity affinor if dim$M\ge 3$.
Classification : 58A20, 58A32
Keywords: natural affinor; natural bundle; natural transformation
@article{ARM_2003__39_3_a9,
     author = {Michalec, Pawe{\l}},
     title = {The canonical tensor fields of type $(1,1)$ on $(J^r(\odot ^2 T^{\ast }))^{\ast }$},
     journal = {Archivum mathematicum},
     pages = {247--256},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2003},
     mrnumber = {2010725},
     zbl = {1112.58300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a9/}
}
TY  - JOUR
AU  - Michalec, Paweł
TI  - The canonical tensor fields of type $(1,1)$ on $(J^r(\odot ^2 T^{\ast }))^{\ast }$
JO  - Archivum mathematicum
PY  - 2003
SP  - 247
EP  - 256
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a9/
LA  - en
ID  - ARM_2003__39_3_a9
ER  - 
%0 Journal Article
%A Michalec, Paweł
%T The canonical tensor fields of type $(1,1)$ on $(J^r(\odot ^2 T^{\ast }))^{\ast }$
%J Archivum mathematicum
%D 2003
%P 247-256
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a9/
%G en
%F ARM_2003__39_3_a9
Michalec, Paweł. The canonical tensor fields of type $(1,1)$ on $(J^r(\odot ^2 T^{\ast }))^{\ast }$. Archivum mathematicum, Tome 39 (2003) no. 3, pp. 247-256. http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a9/