The canonical tensor fields of type $(1,1)$ on $(J^r(\odot ^2 T^{\ast }))^{\ast }$
Archivum mathematicum, Tome 39 (2003) no. 3, pp. 247-256
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove that every natural affinor on $(J^r( \odot ^2 T^{\ast }))^{\ast }(M)$ is proportional to the identity affinor if dim$M\ge 3$.
Classification :
58A20, 58A32
Keywords: natural affinor; natural bundle; natural transformation
Keywords: natural affinor; natural bundle; natural transformation
@article{ARM_2003__39_3_a9,
author = {Michalec, Pawe{\l}},
title = {The canonical tensor fields of type $(1,1)$ on $(J^r(\odot ^2 T^{\ast }))^{\ast }$},
journal = {Archivum mathematicum},
pages = {247--256},
publisher = {mathdoc},
volume = {39},
number = {3},
year = {2003},
mrnumber = {2010725},
zbl = {1112.58300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a9/}
}
Michalec, Paweł. The canonical tensor fields of type $(1,1)$ on $(J^r(\odot ^2 T^{\ast }))^{\ast }$. Archivum mathematicum, Tome 39 (2003) no. 3, pp. 247-256. http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a9/