How to characterize commutativity equalities for Drazin inverses of matrices
Archivum mathematicum, Tome 39 (2003) no. 3, pp. 191-199
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Necessary and sufficient conditions are presented for the commutativity equalities $A^*A^D = A^DA^*$, $A^{\dag }A^D = A^DA^{\dag }$, $A^{\dag }AA^D = A^DAA^{\dag }$, $AA^DA^* = A^*A^DA$ and so on to hold by using rank equalities of matrices. Some related topics are also examined.
Classification :
15A03, 15A09, 15A27
Keywords: commutativity; Drazin inverse; Moore-Penrose inverse; rank equality; matrix expression
Keywords: commutativity; Drazin inverse; Moore-Penrose inverse; rank equality; matrix expression
@article{ARM_2003__39_3_a4,
author = {Tian, Yongge},
title = {How to characterize commutativity equalities for {Drazin} inverses of matrices},
journal = {Archivum mathematicum},
pages = {191--199},
publisher = {mathdoc},
volume = {39},
number = {3},
year = {2003},
mrnumber = {2010720},
zbl = {1122.15300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a4/}
}
Tian, Yongge. How to characterize commutativity equalities for Drazin inverses of matrices. Archivum mathematicum, Tome 39 (2003) no. 3, pp. 191-199. http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a4/