On the powerful part of $n\sp 2+1$
Archivum mathematicum, Tome 39 (2003) no. 3, pp. 187-189
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that $n^2+1$ is powerfull for $O(x^{2/5+\epsilon })$ integers $n\le x$ at most, thus answering a question of P. Ribenboim.
@article{ARM_2003__39_3_a3,
author = {Puchta, Jan-Christoph},
title = {On the powerful part of $n\sp 2+1$},
journal = {Archivum mathematicum},
pages = {187--189},
publisher = {mathdoc},
volume = {39},
number = {3},
year = {2003},
mrnumber = {2010719},
zbl = {1122.11311},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a3/}
}
Puchta, Jan-Christoph. On the powerful part of $n\sp 2+1$. Archivum mathematicum, Tome 39 (2003) no. 3, pp. 187-189. http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a3/