The asymptotic properties of the solutions of the $n$-th order neutral differential equations
Archivum mathematicum, Tome 39 (2003) no. 3, pp. 179-185.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The aim of this paper is to deduce oscillatory and asymptotic behavior of the solutions of the $n-$th order neutral differential equation \[ (x(t)-px(t-\tau ))^{(n)}-q(t)x(\sigma (t))=0\,, \] where $\sigma (t)$ is a delayed or advanced argument.
Classification : 34K11, 34K12, 34K25, 34K40
Keywords: neutral differential equation; delayed argument; advanced argument
@article{ARM_2003__39_3_a2,
     author = {Lackov\'a, D\'a\v{s}a},
     title = {The asymptotic properties of the solutions of the $n$-th order neutral differential equations},
     journal = {Archivum mathematicum},
     pages = {179--185},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2003},
     mrnumber = {2010718},
     zbl = {1116.34340},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a2/}
}
TY  - JOUR
AU  - Lacková, Dáša
TI  - The asymptotic properties of the solutions of the $n$-th order neutral differential equations
JO  - Archivum mathematicum
PY  - 2003
SP  - 179
EP  - 185
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a2/
LA  - en
ID  - ARM_2003__39_3_a2
ER  - 
%0 Journal Article
%A Lacková, Dáša
%T The asymptotic properties of the solutions of the $n$-th order neutral differential equations
%J Archivum mathematicum
%D 2003
%P 179-185
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a2/
%G en
%F ARM_2003__39_3_a2
Lacková, Dáša. The asymptotic properties of the solutions of the $n$-th order neutral differential equations. Archivum mathematicum, Tome 39 (2003) no. 3, pp. 179-185. http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a2/