The asymptotic properties of the solutions of the $n$-th order neutral differential equations
Archivum mathematicum, Tome 39 (2003) no. 3, pp. 179-185
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The aim of this paper is to deduce oscillatory and asymptotic behavior of the solutions of the $n-$th order neutral differential equation \[ (x(t)-px(t-\tau ))^{(n)}-q(t)x(\sigma (t))=0\,, \] where $\sigma (t)$ is a delayed or advanced argument.
Classification :
34K11, 34K12, 34K25, 34K40
Keywords: neutral differential equation; delayed argument; advanced argument
Keywords: neutral differential equation; delayed argument; advanced argument
@article{ARM_2003__39_3_a2,
author = {Lackov\'a, D\'a\v{s}a},
title = {The asymptotic properties of the solutions of the $n$-th order neutral differential equations},
journal = {Archivum mathematicum},
pages = {179--185},
publisher = {mathdoc},
volume = {39},
number = {3},
year = {2003},
mrnumber = {2010718},
zbl = {1116.34340},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a2/}
}
TY - JOUR AU - Lacková, Dáša TI - The asymptotic properties of the solutions of the $n$-th order neutral differential equations JO - Archivum mathematicum PY - 2003 SP - 179 EP - 185 VL - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a2/ LA - en ID - ARM_2003__39_3_a2 ER -
Lacková, Dáša. The asymptotic properties of the solutions of the $n$-th order neutral differential equations. Archivum mathematicum, Tome 39 (2003) no. 3, pp. 179-185. http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a2/