The asymptotic properties of the solutions of the $n$-th order neutral differential equations
Archivum mathematicum, Tome 39 (2003) no. 3, pp. 179-185

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The aim of this paper is to deduce oscillatory and asymptotic behavior of the solutions of the $n-$th order neutral differential equation \[ (x(t)-px(t-\tau ))^{(n)}-q(t)x(\sigma (t))=0\,, \] where $\sigma (t)$ is a delayed or advanced argument.
Classification : 34K11, 34K12, 34K25, 34K40
Keywords: neutral differential equation; delayed argument; advanced argument
@article{ARM_2003__39_3_a2,
     author = {Lackov\'a, D\'a\v{s}a},
     title = {The asymptotic properties of the solutions of the $n$-th order neutral differential equations},
     journal = {Archivum mathematicum},
     pages = {179--185},
     publisher = {mathdoc},
     volume = {39},
     number = {3},
     year = {2003},
     mrnumber = {2010718},
     zbl = {1116.34340},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a2/}
}
TY  - JOUR
AU  - Lacková, Dáša
TI  - The asymptotic properties of the solutions of the $n$-th order neutral differential equations
JO  - Archivum mathematicum
PY  - 2003
SP  - 179
EP  - 185
VL  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a2/
LA  - en
ID  - ARM_2003__39_3_a2
ER  - 
%0 Journal Article
%A Lacková, Dáša
%T The asymptotic properties of the solutions of the $n$-th order neutral differential equations
%J Archivum mathematicum
%D 2003
%P 179-185
%V 39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a2/
%G en
%F ARM_2003__39_3_a2
Lacková, Dáša. The asymptotic properties of the solutions of the $n$-th order neutral differential equations. Archivum mathematicum, Tome 39 (2003) no. 3, pp. 179-185. http://geodesic.mathdoc.fr/item/ARM_2003__39_3_a2/