On the convergence of the Ishikawa iterates to a common fixed point of two mappings
Archivum mathematicum, Tome 39 (2003) no. 2, pp. 123-127.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $C$ be a convex subset of a complete convex metric space $X$, and $S$ and $T$ be two selfmappings on $C$. In this paper it is shown that if the sequence of Ishikawa iterations associated with $S$ and $T$ converges, then its limit point is the common fixed point of $S$ and $T$. This result extends and generalizes the corresponding results of Naimpally and Singh [6], Rhoades [7] and Hicks and Kubicek [3].
Classification : 47H10, 47J25, 54H25
Keywords: Ishikawa iterates; comon fixed point; convex metric space
@article{ARM_2003__39_2_a2,
     author = {\'Ciri\'c, Lj. B. and Ume, J. S. and Khan, M. S.},
     title = {On the convergence of the {Ishikawa} iterates to a common fixed point of two mappings},
     journal = {Archivum mathematicum},
     pages = {123--127},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2003},
     mrnumber = {1994568},
     zbl = {1109.47312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2003__39_2_a2/}
}
TY  - JOUR
AU  - Ćirić, Lj. B.
AU  - Ume, J. S.
AU  - Khan, M. S.
TI  - On the convergence of the Ishikawa iterates to a common fixed point of two mappings
JO  - Archivum mathematicum
PY  - 2003
SP  - 123
EP  - 127
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2003__39_2_a2/
LA  - en
ID  - ARM_2003__39_2_a2
ER  - 
%0 Journal Article
%A Ćirić, Lj. B.
%A Ume, J. S.
%A Khan, M. S.
%T On the convergence of the Ishikawa iterates to a common fixed point of two mappings
%J Archivum mathematicum
%D 2003
%P 123-127
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2003__39_2_a2/
%G en
%F ARM_2003__39_2_a2
Ćirić, Lj. B.; Ume, J. S.; Khan, M. S. On the convergence of the Ishikawa iterates to a common fixed point of two mappings. Archivum mathematicum, Tome 39 (2003) no. 2, pp. 123-127. http://geodesic.mathdoc.fr/item/ARM_2003__39_2_a2/