Heteroclinic orbits in plane dynamical systems
Archivum mathematicum, Tome 38 (2002) no. 3, pp. 183-200
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider general second order boundary value problems on the whole line of the type $u^{\prime \prime }=h(t,u,u^{\prime })$, $u(-\infty )=0, u(+\infty )=1$, for which we provide existence, non-existence, multiplicity results. The solutions we find can be reviewed as heteroclinic orbits in the $(u,u^{\prime })$ plane dynamical system.
Classification :
34B15, 34B16, 34B40, 34C37, 37C29
Keywords: nonlinear boundary value problems; heteroclinic solutions; lower and upper solutions; singular boundary value problems
Keywords: nonlinear boundary value problems; heteroclinic solutions; lower and upper solutions; singular boundary value problems
@article{ARM_2002__38_3_a2,
author = {Malaguti, Luisa and Marcelli, Cristina},
title = {Heteroclinic orbits in plane dynamical systems},
journal = {Archivum mathematicum},
pages = {183--200},
publisher = {mathdoc},
volume = {38},
number = {3},
year = {2002},
mrnumber = {1921590},
zbl = {1090.34037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2002__38_3_a2/}
}
Malaguti, Luisa; Marcelli, Cristina. Heteroclinic orbits in plane dynamical systems. Archivum mathematicum, Tome 38 (2002) no. 3, pp. 183-200. http://geodesic.mathdoc.fr/item/ARM_2002__38_3_a2/