Heteroclinic orbits in plane dynamical systems
Archivum mathematicum, Tome 38 (2002) no. 3, pp. 183-200.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider general second order boundary value problems on the whole line of the type $u^{\prime \prime }=h(t,u,u^{\prime })$, $u(-\infty )=0, u(+\infty )=1$, for which we provide existence, non-existence, multiplicity results. The solutions we find can be reviewed as heteroclinic orbits in the $(u,u^{\prime })$ plane dynamical system.
Classification : 34B15, 34B16, 34B40, 34C37, 37C29
Keywords: nonlinear boundary value problems; heteroclinic solutions; lower and upper solutions; singular boundary value problems
@article{ARM_2002__38_3_a2,
     author = {Malaguti, Luisa and Marcelli, Cristina},
     title = {Heteroclinic orbits in plane dynamical systems},
     journal = {Archivum mathematicum},
     pages = {183--200},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {2002},
     mrnumber = {1921590},
     zbl = {1090.34037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2002__38_3_a2/}
}
TY  - JOUR
AU  - Malaguti, Luisa
AU  - Marcelli, Cristina
TI  - Heteroclinic orbits in plane dynamical systems
JO  - Archivum mathematicum
PY  - 2002
SP  - 183
EP  - 200
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2002__38_3_a2/
LA  - en
ID  - ARM_2002__38_3_a2
ER  - 
%0 Journal Article
%A Malaguti, Luisa
%A Marcelli, Cristina
%T Heteroclinic orbits in plane dynamical systems
%J Archivum mathematicum
%D 2002
%P 183-200
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2002__38_3_a2/
%G en
%F ARM_2002__38_3_a2
Malaguti, Luisa; Marcelli, Cristina. Heteroclinic orbits in plane dynamical systems. Archivum mathematicum, Tome 38 (2002) no. 3, pp. 183-200. http://geodesic.mathdoc.fr/item/ARM_2002__38_3_a2/