Multiple solutions for nonlinear periodic problems with discontinuities
Archivum mathematicum, Tome 38 (2002) no. 3, pp. 171-182
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we consider a periodic problem driven by the one dimensional $p$-Laplacian and with a discontinuous right hand side. We pass to a multivalued problem, by filling in the gaps at the discontinuity points. Then for the multivalued problem, using the nonsmooth critical point theory, we establish the existence of at least three distinct periodic solutions.
Classification :
34A36, 34B15, 34C25, 47J30
Keywords: multiple solutions; periodic problem; one-dimensional $p$-Laplacian; discontinuous vector field; nonsmooth Palais-Smale condition; locally Lipschitz function; generalized subdifferential; critical point; Saddle Point Theorem; Ekeland variational principle
Keywords: multiple solutions; periodic problem; one-dimensional $p$-Laplacian; discontinuous vector field; nonsmooth Palais-Smale condition; locally Lipschitz function; generalized subdifferential; critical point; Saddle Point Theorem; Ekeland variational principle
@article{ARM_2002__38_3_a1,
author = {Papageorgiou, Nikolaos S. and Yannakakis, Nikolaos},
title = {Multiple solutions for nonlinear periodic problems with discontinuities},
journal = {Archivum mathematicum},
pages = {171--182},
publisher = {mathdoc},
volume = {38},
number = {3},
year = {2002},
mrnumber = {1921589},
zbl = {1090.34035},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2002__38_3_a1/}
}
TY - JOUR AU - Papageorgiou, Nikolaos S. AU - Yannakakis, Nikolaos TI - Multiple solutions for nonlinear periodic problems with discontinuities JO - Archivum mathematicum PY - 2002 SP - 171 EP - 182 VL - 38 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2002__38_3_a1/ LA - en ID - ARM_2002__38_3_a1 ER -
Papageorgiou, Nikolaos S.; Yannakakis, Nikolaos. Multiple solutions for nonlinear periodic problems with discontinuities. Archivum mathematicum, Tome 38 (2002) no. 3, pp. 171-182. http://geodesic.mathdoc.fr/item/ARM_2002__38_3_a1/