On solvability of nonlinear boundary value problems for the equation $(x'+g(t,x,x'))'=f(t,x,x')$ with one-sided growth restrictions on $f$
Archivum mathematicum, Tome 38 (2002) no. 2, pp. 129-148
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider boundary value problems for second order differential equations of the form $(x^{\prime }+g(t,x,x^{\prime }))^{\prime }=f(t,x,x^{\prime })$ with the boundary conditions $r(x(0),x^{\prime }(0),x(T)) + \varphi (x)=0$, $w(x(0),x(T),x^{\prime }(T))+ \psi (x)=0$, where $g,r,w$ are continuous functions, $f$ satisfies the local Carathéodory conditions and $\varphi , \psi $ are continuous and nondecreasing functionals. Existence results are proved by the method of lower and upper functions and applying the degree theory for $\alpha $-condensing operators.
Classification :
34B15, 47N20
Keywords: nonlinear boundary value problem; existence; lower and upper functions; $\alpha $-condensing operator; Borsuk antipodal theorem; Leray-Schauder degree; homotopy
Keywords: nonlinear boundary value problem; existence; lower and upper functions; $\alpha $-condensing operator; Borsuk antipodal theorem; Leray-Schauder degree; homotopy
@article{ARM_2002__38_2_a4,
author = {Stan\v{e}k, Svatoslav},
title = {On solvability of nonlinear boundary value problems for the equation $(x'+g(t,x,x'))'=f(t,x,x')$ with one-sided growth restrictions on $f$},
journal = {Archivum mathematicum},
pages = {129--148},
publisher = {mathdoc},
volume = {38},
number = {2},
year = {2002},
mrnumber = {1909594},
zbl = {1087.34007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2002__38_2_a4/}
}
TY - JOUR AU - Staněk, Svatoslav TI - On solvability of nonlinear boundary value problems for the equation $(x'+g(t,x,x'))'=f(t,x,x')$ with one-sided growth restrictions on $f$ JO - Archivum mathematicum PY - 2002 SP - 129 EP - 148 VL - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2002__38_2_a4/ LA - en ID - ARM_2002__38_2_a4 ER -
%0 Journal Article %A Staněk, Svatoslav %T On solvability of nonlinear boundary value problems for the equation $(x'+g(t,x,x'))'=f(t,x,x')$ with one-sided growth restrictions on $f$ %J Archivum mathematicum %D 2002 %P 129-148 %V 38 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ARM_2002__38_2_a4/ %G en %F ARM_2002__38_2_a4
Staněk, Svatoslav. On solvability of nonlinear boundary value problems for the equation $(x'+g(t,x,x'))'=f(t,x,x')$ with one-sided growth restrictions on $f$. Archivum mathematicum, Tome 38 (2002) no. 2, pp. 129-148. http://geodesic.mathdoc.fr/item/ARM_2002__38_2_a4/