Ricci curvature of real hypersurfaces in complex hyperbolic space
Archivum mathematicum, Tome 38 (2002) no. 1, pp. 73-80
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
First we prove a general algebraic lemma. By applying the algebraic lemma we establish a general inequality involving the Ricci curvature of an arbitrary real hypersurface in a complex hyperbolic space. We also classify real hypersurfaces with constant principal curvatures which satisfy the equality case of the inequality.
Classification :
53B25, 53C40, 53C42
Keywords: Ricci curvature; shape operator; real hypersurface; algebraic lemma; tubular hypersurface; horosphere; complex hyperbolic space
Keywords: Ricci curvature; shape operator; real hypersurface; algebraic lemma; tubular hypersurface; horosphere; complex hyperbolic space
@article{ARM_2002__38_1_a7,
author = {Chen, Bang-Yen},
title = {Ricci curvature of real hypersurfaces in complex hyperbolic space},
journal = {Archivum mathematicum},
pages = {73--80},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {2002},
mrnumber = {1899570},
zbl = {1087.53052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2002__38_1_a7/}
}
Chen, Bang-Yen. Ricci curvature of real hypersurfaces in complex hyperbolic space. Archivum mathematicum, Tome 38 (2002) no. 1, pp. 73-80. http://geodesic.mathdoc.fr/item/ARM_2002__38_1_a7/