A note on the Cauchy problem for first order linear differential equations with a deviating argument
Archivum mathematicum, Tome 38 (2002) no. 1, pp. 61-71
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Conditions for the existence and uniqueness of a solution of the Cauchy problem \[ u^{\prime }(t)=p(t)u(\tau (t))+q(t)\,,\qquad u(a)=c\,, \] established in [2], are formulated more precisely and refined for the special case, where the function $\tau $ maps the interval $]a,b[$ into some subinterval $[\tau _0,\tau _1]\subseteq [a,b]$, which can be degenerated to a point.
Classification :
34K06
Keywords: first order equation; differential equation with deviating arguments; initial value problems
Keywords: first order equation; differential equation with deviating arguments; initial value problems
@article{ARM_2002__38_1_a6,
author = {Hakl, Robert and Lomtatidze, Alexander},
title = {A note on the {Cauchy} problem for first order linear differential equations with a deviating argument},
journal = {Archivum mathematicum},
pages = {61--71},
publisher = {mathdoc},
volume = {38},
number = {1},
year = {2002},
mrnumber = {1899569},
zbl = {1087.34043},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2002__38_1_a6/}
}
TY - JOUR AU - Hakl, Robert AU - Lomtatidze, Alexander TI - A note on the Cauchy problem for first order linear differential equations with a deviating argument JO - Archivum mathematicum PY - 2002 SP - 61 EP - 71 VL - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2002__38_1_a6/ LA - en ID - ARM_2002__38_1_a6 ER -
%0 Journal Article %A Hakl, Robert %A Lomtatidze, Alexander %T A note on the Cauchy problem for first order linear differential equations with a deviating argument %J Archivum mathematicum %D 2002 %P 61-71 %V 38 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ARM_2002__38_1_a6/ %G en %F ARM_2002__38_1_a6
Hakl, Robert; Lomtatidze, Alexander. A note on the Cauchy problem for first order linear differential equations with a deviating argument. Archivum mathematicum, Tome 38 (2002) no. 1, pp. 61-71. http://geodesic.mathdoc.fr/item/ARM_2002__38_1_a6/