A note on the Cauchy problem for first order linear differential equations with a deviating argument
Archivum mathematicum, Tome 38 (2002) no. 1, pp. 61-71.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Conditions for the existence and uniqueness of a solution of the Cauchy problem \[ u^{\prime }(t)=p(t)u(\tau (t))+q(t)\,,\qquad u(a)=c\,, \] established in [2], are formulated more precisely and refined for the special case, where the function $\tau $ maps the interval $]a,b[$ into some subinterval $[\tau _0,\tau _1]\subseteq [a,b]$, which can be degenerated to a point.
Classification : 34K06
Keywords: first order equation; differential equation with deviating arguments; initial value problems
@article{ARM_2002__38_1_a6,
     author = {Hakl, Robert and Lomtatidze, Alexander},
     title = {A note on the {Cauchy} problem for first order linear differential equations with a deviating argument},
     journal = {Archivum mathematicum},
     pages = {61--71},
     publisher = {mathdoc},
     volume = {38},
     number = {1},
     year = {2002},
     mrnumber = {1899569},
     zbl = {1087.34043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2002__38_1_a6/}
}
TY  - JOUR
AU  - Hakl, Robert
AU  - Lomtatidze, Alexander
TI  - A note on the Cauchy problem for first order linear differential equations with a deviating argument
JO  - Archivum mathematicum
PY  - 2002
SP  - 61
EP  - 71
VL  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2002__38_1_a6/
LA  - en
ID  - ARM_2002__38_1_a6
ER  - 
%0 Journal Article
%A Hakl, Robert
%A Lomtatidze, Alexander
%T A note on the Cauchy problem for first order linear differential equations with a deviating argument
%J Archivum mathematicum
%D 2002
%P 61-71
%V 38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2002__38_1_a6/
%G en
%F ARM_2002__38_1_a6
Hakl, Robert; Lomtatidze, Alexander. A note on the Cauchy problem for first order linear differential equations with a deviating argument. Archivum mathematicum, Tome 38 (2002) no. 1, pp. 61-71. http://geodesic.mathdoc.fr/item/ARM_2002__38_1_a6/