Random fixed points of increasing compact random maps
Archivum mathematicum, Tome 37 (2001) no. 4, pp. 329-332.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(\Omega ,\Sigma )$ be a measurable space, $(E,P)$ be an ordered separable Banach space and let $[a,b]$ be a nonempty order interval in $E$. It is shown that if $f:\Omega \times [a,b]\rightarrow E$ is an increasing compact random map such that $a\le f(\omega ,a)$ and $f(\omega ,b)\le b$ for each $\omega \in \Omega $ then $f$ possesses a minimal random fixed point $\alpha $ and a maximal random fixed point $\beta $.
Classification : 47H10, 47H40, 60H25
Keywords: random fixed point; random map; measurable space; ordered Banach space
@article{ARM_2001__37_4_a8,
     author = {Beg, Ismat},
     title = {Random fixed points of increasing compact random maps},
     journal = {Archivum mathematicum},
     pages = {329--332},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2001},
     mrnumber = {1879455},
     zbl = {1068.47079},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a8/}
}
TY  - JOUR
AU  - Beg, Ismat
TI  - Random fixed points of increasing compact random maps
JO  - Archivum mathematicum
PY  - 2001
SP  - 329
EP  - 332
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a8/
LA  - en
ID  - ARM_2001__37_4_a8
ER  - 
%0 Journal Article
%A Beg, Ismat
%T Random fixed points of increasing compact random maps
%J Archivum mathematicum
%D 2001
%P 329-332
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a8/
%G en
%F ARM_2001__37_4_a8
Beg, Ismat. Random fixed points of increasing compact random maps. Archivum mathematicum, Tome 37 (2001) no. 4, pp. 329-332. http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a8/