Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral
Archivum mathematicum, Tome 37 (2001) no. 4, pp. 307-328.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In 1990, Hönig proved that the linear Volterra integral equation \[ x\left( t\right) -\,(K)\int \nolimits _{\left[ a,t\right] }\alpha \left( t,s\right) x\left( s\right)\,ds=f\left( t\right)\,,\qquad t\in \left[ a,b\right]\,, \] where the functions are Banach space-valued and $f$ is a Kurzweil integrable function defined on a compact interval $\left[ a,b\right] $ of the real line $\mathbb R$, admits one and only one solution in the space of the Kurzweil integrable functions with resolvent given by the Neumann series. In the present paper, we extend Hönig’s result to the linear Volterra-Stieltjes integral equation \[ x\left( t\right) - (K)\int \nolimits _{\left[ a,t\right] }\alpha \left( t,s\right) x\left( s\right) dg\left( s\right) =f\left( t\right) ,\qquad t\in \left[ a,b\right]\,, \] in a real-valued context.
Classification : 26A39, 45A05
Keywords: linear integral equations; Kurzweil-Henstock integrals
@article{ARM_2001__37_4_a7,
     author = {Federson, M. and Bianconi, R.},
     title = {Linear {Volterra-Stieltjes} integral equations in the sense of the {Kurzweil-Henstock} integral},
     journal = {Archivum mathematicum},
     pages = {307--328},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2001},
     mrnumber = {1879454},
     zbl = {1090.45001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a7/}
}
TY  - JOUR
AU  - Federson, M.
AU  - Bianconi, R.
TI  - Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral
JO  - Archivum mathematicum
PY  - 2001
SP  - 307
EP  - 328
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a7/
LA  - en
ID  - ARM_2001__37_4_a7
ER  - 
%0 Journal Article
%A Federson, M.
%A Bianconi, R.
%T Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral
%J Archivum mathematicum
%D 2001
%P 307-328
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a7/
%G en
%F ARM_2001__37_4_a7
Federson, M.; Bianconi, R. Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral. Archivum mathematicum, Tome 37 (2001) no. 4, pp. 307-328. http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a7/