Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral
Archivum mathematicum, Tome 37 (2001) no. 4, pp. 307-328
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In 1990, Hönig proved that the linear Volterra integral equation \[ x\left( t\right) -\,(K)\int \nolimits _{\left[ a,t\right] }\alpha \left( t,s\right) x\left( s\right)\,ds=f\left( t\right)\,,\qquad t\in \left[ a,b\right]\,, \] where the functions are Banach space-valued and $f$ is a Kurzweil integrable function defined on a compact interval $\left[ a,b\right] $ of the real line $\mathbb R$, admits one and only one solution in the space of the Kurzweil integrable functions with resolvent given by the Neumann series. In the present paper, we extend Hönig’s result to the linear Volterra-Stieltjes integral equation \[ x\left( t\right) - (K)\int \nolimits _{\left[ a,t\right] }\alpha \left( t,s\right) x\left( s\right) dg\left( s\right) =f\left( t\right) ,\qquad t\in \left[ a,b\right]\,, \] in a real-valued context.
Classification :
26A39, 45A05
Keywords: linear integral equations; Kurzweil-Henstock integrals
Keywords: linear integral equations; Kurzweil-Henstock integrals
@article{ARM_2001__37_4_a7,
author = {Federson, M. and Bianconi, R.},
title = {Linear {Volterra-Stieltjes} integral equations in the sense of the {Kurzweil-Henstock} integral},
journal = {Archivum mathematicum},
pages = {307--328},
publisher = {mathdoc},
volume = {37},
number = {4},
year = {2001},
mrnumber = {1879454},
zbl = {1090.45001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a7/}
}
TY - JOUR AU - Federson, M. AU - Bianconi, R. TI - Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral JO - Archivum mathematicum PY - 2001 SP - 307 EP - 328 VL - 37 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a7/ LA - en ID - ARM_2001__37_4_a7 ER -
Federson, M.; Bianconi, R. Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral. Archivum mathematicum, Tome 37 (2001) no. 4, pp. 307-328. http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a7/