Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$
Archivum mathematicum, Tome 37 (2001) no. 4, pp. 279-287.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The main result of the present paper is obtaining new inequalities for solutions of scalar equation $\dot{x}(t)=b(t)x(t-\tau (t))$. Except this the interval of transient process is computed, i.e. the time is estimated, during which the given solution $x(t)$ reaches an $\varepsilon $ - neighbourhood of origin and remains in it.
Classification : 34K20, 34K25
Keywords: stability of trivial solution; estimation of convergence of nontrivial solutions
@article{ARM_2001__37_4_a3,
     author = {Dibl{\'\i}k, Josef and Khusainov, Denys},
     title = {Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$},
     journal = {Archivum mathematicum},
     pages = {279--287},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {2001},
     mrnumber = {1879450},
     zbl = {1090.34059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a3/}
}
TY  - JOUR
AU  - Diblík, Josef
AU  - Khusainov, Denys
TI  - Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$
JO  - Archivum mathematicum
PY  - 2001
SP  - 279
EP  - 287
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a3/
LA  - en
ID  - ARM_2001__37_4_a3
ER  - 
%0 Journal Article
%A Diblík, Josef
%A Khusainov, Denys
%T Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$
%J Archivum mathematicum
%D 2001
%P 279-287
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a3/
%G en
%F ARM_2001__37_4_a3
Diblík, Josef; Khusainov, Denys. Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$. Archivum mathematicum, Tome 37 (2001) no. 4, pp. 279-287. http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a3/