Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$
Archivum mathematicum, Tome 37 (2001) no. 4, pp. 279-287
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The main result of the present paper is obtaining new inequalities for solutions of scalar equation $\dot{x}(t)=b(t)x(t-\tau (t))$. Except this the interval of transient process is computed, i.e. the time is estimated, during which the given solution $x(t)$ reaches an $\varepsilon $ - neighbourhood of origin and remains in it.
Classification :
34K20, 34K25
Keywords: stability of trivial solution; estimation of convergence of nontrivial solutions
Keywords: stability of trivial solution; estimation of convergence of nontrivial solutions
@article{ARM_2001__37_4_a3,
author = {Dibl{\'\i}k, Josef and Khusainov, Denys},
title = {Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$},
journal = {Archivum mathematicum},
pages = {279--287},
publisher = {mathdoc},
volume = {37},
number = {4},
year = {2001},
mrnumber = {1879450},
zbl = {1090.34059},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a3/}
}
TY - JOUR AU - Diblík, Josef AU - Khusainov, Denys TI - Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$ JO - Archivum mathematicum PY - 2001 SP - 279 EP - 287 VL - 37 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a3/ LA - en ID - ARM_2001__37_4_a3 ER -
%0 Journal Article %A Diblík, Josef %A Khusainov, Denys %T Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$ %J Archivum mathematicum %D 2001 %P 279-287 %V 37 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a3/ %G en %F ARM_2001__37_4_a3
Diblík, Josef; Khusainov, Denys. Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$. Archivum mathematicum, Tome 37 (2001) no. 4, pp. 279-287. http://geodesic.mathdoc.fr/item/ARM_2001__37_4_a3/