Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold
Archivum mathematicum, Tome 37 (2001) no. 2, pp. 143-160
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $M$ be a differentiable manifold with a pseudo-Riemannian metric $g$ and a linear symmetric connection $K$. We classify all natural (in the sense of [KMS]) 0-order vector fields and 2-vector fields on $TM$ generated by $g$ and $K$. We get that all natural vector fields are of the form \[ E(u)=\alpha (h(u))\, u^H + \beta (h(u))\, u^V\,, \] where $u^V$ is the vertical lift of $u\in T_xM$, $u^H$ is the horizontal lift of $u$ with respect to $K$, $h(u)= 1/2 g(u,u)$ and $\alpha ,\beta $ are smooth real functions defined on $R$. All natural 2-vector fields are of the form \[ \Lambda (u) = \gamma _1(h(u))\, \Lambda (g,K) + \gamma _2(h(u))\,u^H\wedge u^V\,, \] where $\gamma _1$, $\gamma _2$ are smooth real functions defined on $R$ and $\Lambda (g,K)$ is the canonical 2-vector field induced by $g$ and $K$. Conditions for $(E,\Lambda )$ to define a Jacobi or a Poisson structure on $TM$ are disscused.
Classification :
53C50, 53D17, 58A20, 58A32
Keywords: Poisson structure; pseudo–Riemannian manifold; natural operator
Keywords: Poisson structure; pseudo–Riemannian manifold; natural operator
@article{ARM_2001__37_2_a5,
author = {Jany\v{s}ka, Josef},
title = {Natural vector fields and 2-vector fields on the tangent bundle of a {pseudo-Riemannian} manifold},
journal = {Archivum mathematicum},
pages = {143--160},
publisher = {mathdoc},
volume = {37},
number = {2},
year = {2001},
mrnumber = {1838411},
zbl = {1090.58007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2001__37_2_a5/}
}
TY - JOUR AU - Janyška, Josef TI - Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold JO - Archivum mathematicum PY - 2001 SP - 143 EP - 160 VL - 37 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2001__37_2_a5/ LA - en ID - ARM_2001__37_2_a5 ER -
Janyška, Josef. Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold. Archivum mathematicum, Tome 37 (2001) no. 2, pp. 143-160. http://geodesic.mathdoc.fr/item/ARM_2001__37_2_a5/