The valuated ring of the arithmetical functions as a power series ring
Archivum mathematicum, Tome 37 (2001) no. 1, pp. 77-80
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The paper examines the ring $A$ of arithmetical functions, identifying it to the domain of formal power series over ${\bf C}$ in a countable set of indeterminates. It is proven that $A$ is a complete ultrametric space and all its continuous endomorphisms are described. It is also proven that $A$ is a quasi-noetherian ring.
Classification :
13F25, 13F30
Keywords: arithmetical function; valuated ring; formal power series
Keywords: arithmetical function; valuated ring; formal power series
@article{ARM_2001__37_1_a9,
author = {Schwab, Emil D. and Silberberg, Gheorghe},
title = {The valuated ring of the arithmetical functions as a power series ring},
journal = {Archivum mathematicum},
pages = {77--80},
publisher = {mathdoc},
volume = {37},
number = {1},
year = {2001},
mrnumber = {1822767},
zbl = {1090.13016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2001__37_1_a9/}
}
TY - JOUR AU - Schwab, Emil D. AU - Silberberg, Gheorghe TI - The valuated ring of the arithmetical functions as a power series ring JO - Archivum mathematicum PY - 2001 SP - 77 EP - 80 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2001__37_1_a9/ LA - en ID - ARM_2001__37_1_a9 ER -
Schwab, Emil D.; Silberberg, Gheorghe. The valuated ring of the arithmetical functions as a power series ring. Archivum mathematicum, Tome 37 (2001) no. 1, pp. 77-80. http://geodesic.mathdoc.fr/item/ARM_2001__37_1_a9/