Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{ARM_2000__36_5_a15, author = {Kov\'a\v{c}ov\'a, Monika}, title = {Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$}, journal = {Archivum mathematicum}, pages = {487--498}, publisher = {mathdoc}, volume = {36}, number = {5}, year = {2000}, mrnumber = {1822818}, zbl = {1072.34034}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ARM_2000__36_5_a15/} }
TY - JOUR AU - Kováčová, Monika TI - Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$ JO - Archivum mathematicum PY - 2000 SP - 487 EP - 498 VL - 36 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2000__36_5_a15/ LA - en ID - ARM_2000__36_5_a15 ER -
%0 Journal Article %A Kováčová, Monika %T Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$ %J Archivum mathematicum %D 2000 %P 487-498 %V 36 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ARM_2000__36_5_a15/ %G en %F ARM_2000__36_5_a15
Kováčová, Monika. Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 487-498. http://geodesic.mathdoc.fr/item/ARM_2000__36_5_a15/