Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$
Archivum mathematicum, Tome 36 (2000) no. 5, pp. 487-498.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Classification : 34C10, 34C15
@article{ARM_2000__36_5_a15,
     author = {Kov\'a\v{c}ov\'a, Monika},
     title = {Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$},
     journal = {Archivum mathematicum},
     pages = {487--498},
     publisher = {mathdoc},
     volume = {36},
     number = {5},
     year = {2000},
     mrnumber = {1822818},
     zbl = {1072.34034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000__36_5_a15/}
}
TY  - JOUR
AU  - Kováčová, Monika
TI  - Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$
JO  - Archivum mathematicum
PY  - 2000
SP  - 487
EP  - 498
VL  - 36
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2000__36_5_a15/
LA  - en
ID  - ARM_2000__36_5_a15
ER  - 
%0 Journal Article
%A Kováčová, Monika
%T Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$
%J Archivum mathematicum
%D 2000
%P 487-498
%V 36
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2000__36_5_a15/
%G en
%F ARM_2000__36_5_a15
Kováčová, Monika. Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 487-498. http://geodesic.mathdoc.fr/item/ARM_2000__36_5_a15/