Some properties of Lorenzen ideal systems
Archivum mathematicum, Tome 36 (2000) no. 4, pp. 287-295
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $G$ be a partially ordered abelian group ($po$-group). The construction of the Lorenzen ideal $r_a$-system in $G$ is investigated and the functorial properties of this construction with respect to the semigroup $(R(G),\oplus ,\le )$ of all $r$-ideal systems defined on $G$ are derived, where for $r,s\in R(G)$ and a lower bounded subset $X\subseteq G$, $X_{r\oplus s}=X_r\cap X_s$. It is proved that Lorenzen construction is the natural transformation between two functors from the category of $po$-groups with special morphisms into the category of abelian ordered semigroups.
Classification :
06F05, 06F15, 06F20, 18A23
Keywords: $r$-ideal; $r_a$-system; system of finite character
Keywords: $r$-ideal; $r_a$-system; system of finite character
@article{ARM_2000__36_4_a5,
author = {Kalapodi, A. and Kontolatou, A. and Mo\v{c}ko\v{r}, J.},
title = {Some properties of {Lorenzen} ideal systems},
journal = {Archivum mathematicum},
pages = {287--295},
publisher = {mathdoc},
volume = {36},
number = {4},
year = {2000},
mrnumber = {1811173},
zbl = {1047.06011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000__36_4_a5/}
}
Kalapodi, A.; Kontolatou, A.; Močkoř, J. Some properties of Lorenzen ideal systems. Archivum mathematicum, Tome 36 (2000) no. 4, pp. 287-295. http://geodesic.mathdoc.fr/item/ARM_2000__36_4_a5/