The natural operators lifting vector fields to generalized higher order tangent bundles
Archivum mathematicum, Tome 36 (2000) no. 3, pp. 207-212.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For natural numbers $r$ and $n$ and a real number $a$ we construct a natural vector bundle $T^{(r),a}$ over $n$-manifolds such that $T^{(r),0}$ is the (classical) vector tangent bundle $T^{(r)}$ of order $r$. For integers $r\ge 1$ and $n\ge 3$ and a real number $a0$ we classify all natural operators $T_{\vert M_n}\rightsquigarrow TT^{(r),a}$ lifting vector fields from $n$-manifolds to $T^{(r),a}$.
Classification : 53A55, 58A20, 58A32
Keywords: natural bundle; natural transformation; natural operator
@article{ARM_2000__36_3_a5,
     author = {Mikulski, W{\l}odzimierz M.},
     title = {The natural operators lifting vector fields to generalized higher order tangent bundles},
     journal = {Archivum mathematicum},
     pages = {207--212},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2000},
     mrnumber = {1785038},
     zbl = {1049.58010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000__36_3_a5/}
}
TY  - JOUR
AU  - Mikulski, Włodzimierz M.
TI  - The natural operators lifting vector fields to generalized higher order tangent bundles
JO  - Archivum mathematicum
PY  - 2000
SP  - 207
EP  - 212
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2000__36_3_a5/
LA  - en
ID  - ARM_2000__36_3_a5
ER  - 
%0 Journal Article
%A Mikulski, Włodzimierz M.
%T The natural operators lifting vector fields to generalized higher order tangent bundles
%J Archivum mathematicum
%D 2000
%P 207-212
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2000__36_3_a5/
%G en
%F ARM_2000__36_3_a5
Mikulski, Włodzimierz M. The natural operators lifting vector fields to generalized higher order tangent bundles. Archivum mathematicum, Tome 36 (2000) no. 3, pp. 207-212. http://geodesic.mathdoc.fr/item/ARM_2000__36_3_a5/