On Lie ideals and Jordan left derivations of prime rings
Archivum mathematicum, Tome 36 (2000) no. 3, pp. 201-206.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a 2-torsion free prime ring and let $U$ be a Lie ideal of $R$ such that $u^{2} \in U$ for all $u \in U$. In the present paper it is shown that if $d$ is an additive mappings of $R$ into itself satisfying $d(u^{2})=2ud(u)$ for all $u \in U$, then $d(uv)=ud(v)+vd(u)$ for all $u,v \in U$.
Classification : 16N60, 16W10, 16W25
Keywords: Lie ideals; prime rings; Jordan left derivations; left derivations; torsion free rings
@article{ARM_2000__36_3_a4,
     author = {Ashraf, Mohammad and Nadeem-ur-Rehman},
     title = {On {Lie} ideals and {Jordan} left derivations of prime rings},
     journal = {Archivum mathematicum},
     pages = {201--206},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2000},
     mrnumber = {1785037},
     zbl = {1030.16018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000__36_3_a4/}
}
TY  - JOUR
AU  - Ashraf, Mohammad
AU  - Nadeem-ur-Rehman
TI  - On Lie ideals and Jordan left derivations of prime rings
JO  - Archivum mathematicum
PY  - 2000
SP  - 201
EP  - 206
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2000__36_3_a4/
LA  - en
ID  - ARM_2000__36_3_a4
ER  - 
%0 Journal Article
%A Ashraf, Mohammad
%A Nadeem-ur-Rehman
%T On Lie ideals and Jordan left derivations of prime rings
%J Archivum mathematicum
%D 2000
%P 201-206
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2000__36_3_a4/
%G en
%F ARM_2000__36_3_a4
Ashraf, Mohammad; Nadeem-ur-Rehman. On Lie ideals and Jordan left derivations of prime rings. Archivum mathematicum, Tome 36 (2000) no. 3, pp. 201-206. http://geodesic.mathdoc.fr/item/ARM_2000__36_3_a4/