Characterization of posets of intervals
Archivum mathematicum, Tome 36 (2000) no. 3, pp. 171-181.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

If $A$ is a class of partially ordered sets, let $P(A)$ denote the system of all posets which are isomorphic to the system of all intervals of $A$ for some $A\in A.$ We give an algebraic characterization of elements of $P(A)$ for $A$ being the class of all bounded posets and the class of all posets $A$ satisfying the condition that for each $a\in A$ there exist a minimal element $u$ and a maximal element $v$ with $u\le a\le v,$ respectively.
Classification : 06A06
Keywords: partially ordered set; interval
@article{ARM_2000__36_3_a1,
     author = {Lihov\'a, Judita},
     title = {Characterization of posets of intervals},
     journal = {Archivum mathematicum},
     pages = {171--181},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2000},
     mrnumber = {1785034},
     zbl = {1047.06002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000__36_3_a1/}
}
TY  - JOUR
AU  - Lihová, Judita
TI  - Characterization of posets of intervals
JO  - Archivum mathematicum
PY  - 2000
SP  - 171
EP  - 181
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2000__36_3_a1/
LA  - en
ID  - ARM_2000__36_3_a1
ER  - 
%0 Journal Article
%A Lihová, Judita
%T Characterization of posets of intervals
%J Archivum mathematicum
%D 2000
%P 171-181
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2000__36_3_a1/
%G en
%F ARM_2000__36_3_a1
Lihová, Judita. Characterization of posets of intervals. Archivum mathematicum, Tome 36 (2000) no. 3, pp. 171-181. http://geodesic.mathdoc.fr/item/ARM_2000__36_3_a1/