Characterization of posets of intervals
Archivum mathematicum, Tome 36 (2000) no. 3, pp. 171-181
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
If $A$ is a class of partially ordered sets, let $P(A)$ denote the system of all posets which are isomorphic to the system of all intervals of $A$ for some $A\in A.$ We give an algebraic characterization of elements of $P(A)$ for $A$ being the class of all bounded posets and the class of all posets $A$ satisfying the condition that for each $a\in A$ there exist a minimal element $u$ and a maximal element $v$ with $u\le a\le v,$ respectively.
@article{ARM_2000__36_3_a1,
author = {Lihov\'a, Judita},
title = {Characterization of posets of intervals},
journal = {Archivum mathematicum},
pages = {171--181},
publisher = {mathdoc},
volume = {36},
number = {3},
year = {2000},
mrnumber = {1785034},
zbl = {1047.06002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000__36_3_a1/}
}
Lihová, Judita. Characterization of posets of intervals. Archivum mathematicum, Tome 36 (2000) no. 3, pp. 171-181. http://geodesic.mathdoc.fr/item/ARM_2000__36_3_a1/