Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane
Archivum mathematicum, Tome 36 (2000) no. 2, pp. 139-158.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An existence and uniqueness theorem for solutions in the Banach space $l_{1}$ of a nonlinear difference equation is given. The constructive character of the proof of the theorem predicts local asymptotic stability and gives information about the size of the region of attraction near equilibrium points.
Classification : 39A10, 39A11, 65Q05
Keywords: nonlinear difference equations; solution in $l_{1}$
@article{ARM_2000__36_2_a5,
     author = {Petropoulou, Eugenia N. and Siafarikas, Panayiotis D.},
     title = {Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane},
     journal = {Archivum mathematicum},
     pages = {139--158},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2000},
     mrnumber = {1761618},
     zbl = {1053.39016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000__36_2_a5/}
}
TY  - JOUR
AU  - Petropoulou, Eugenia N.
AU  - Siafarikas, Panayiotis D.
TI  - Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane
JO  - Archivum mathematicum
PY  - 2000
SP  - 139
EP  - 158
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2000__36_2_a5/
LA  - en
ID  - ARM_2000__36_2_a5
ER  - 
%0 Journal Article
%A Petropoulou, Eugenia N.
%A Siafarikas, Panayiotis D.
%T Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane
%J Archivum mathematicum
%D 2000
%P 139-158
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2000__36_2_a5/
%G en
%F ARM_2000__36_2_a5
Petropoulou, Eugenia N.; Siafarikas, Panayiotis D. Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane. Archivum mathematicum, Tome 36 (2000) no. 2, pp. 139-158. http://geodesic.mathdoc.fr/item/ARM_2000__36_2_a5/