On the limit cycle of the Liénard equation
Archivum mathematicum, Tome 36 (2000) no. 1, pp. 25-31.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the paper, we give an existence theorem of periodic solution for Liénard equation $\dot{x}=y-F(x)$, $\dot{y}=-g(x)$. As a result, we estimate the amplitude $\rho (\mu )$ (maximal $x$-value) of the limit cycle of the van der Pol equation $\dot{x}=y-\mu (x^3/3-x)$, $\dot{y}=-x$ from above by $\rho (\mu )2.3439$ for every $\mu \ne 0$. The result is an improvement of the author’s previous estimation $\rho (\mu )2.5425$.
Classification : 34C05
Keywords: van der Pol equation; limit cycle; amplitude
@article{ARM_2000__36_1_a3,
     author = {Odani, Kenzi},
     title = {On the limit cycle of the {Li\'enard} equation},
     journal = {Archivum mathematicum},
     pages = {25--31},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2000},
     mrnumber = {1751611},
     zbl = {1048.34067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000__36_1_a3/}
}
TY  - JOUR
AU  - Odani, Kenzi
TI  - On the limit cycle of the Liénard equation
JO  - Archivum mathematicum
PY  - 2000
SP  - 25
EP  - 31
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2000__36_1_a3/
LA  - en
ID  - ARM_2000__36_1_a3
ER  - 
%0 Journal Article
%A Odani, Kenzi
%T On the limit cycle of the Liénard equation
%J Archivum mathematicum
%D 2000
%P 25-31
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2000__36_1_a3/
%G en
%F ARM_2000__36_1_a3
Odani, Kenzi. On the limit cycle of the Liénard equation. Archivum mathematicum, Tome 36 (2000) no. 1, pp. 25-31. http://geodesic.mathdoc.fr/item/ARM_2000__36_1_a3/