On $(1,1)$-tensor fields on symplectic manifolds
Archivum mathematicum, Tome 35 (1999) no. 4, pp. 329-336
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Two symplectic structures on a manifold $M$ determine a (1,1)-tensor field on $M$. In this paper we study some properties of this field. Conversely, if $A$ is (1,1)-tensor field on a symplectic manifold $(M, \omega )$ then using the natural lift theory we find conditions under which $\omega ^A, \omega ^A(X, Y)=\omega (AX, Y)$, is symplectic.
Classification :
37J05, 53D05, 58A20
Keywords: symplectic structure; natural lifts on tangent and cotangent bundles
Keywords: symplectic structure; natural lifts on tangent and cotangent bundles
@article{ARM_1999__35_4_a4,
author = {Dekr\'et, Anton},
title = {On $(1,1)$-tensor fields on symplectic manifolds},
journal = {Archivum mathematicum},
pages = {329--336},
publisher = {mathdoc},
volume = {35},
number = {4},
year = {1999},
mrnumber = {1744520},
zbl = {1054.53089},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1999__35_4_a4/}
}
Dekrét, Anton. On $(1,1)$-tensor fields on symplectic manifolds. Archivum mathematicum, Tome 35 (1999) no. 4, pp. 329-336. http://geodesic.mathdoc.fr/item/ARM_1999__35_4_a4/