Leudesdorf's theorem and Bernoulli numbers
Archivum mathematicum, Tome 35 (1999) no. 4, pp. 299-303.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For $m\in $, $(m,6)=1$, it is proved the relations between the sums \[ W(m,s)=\sum _{i=1, (i,m)=1}^{m-1} i^{-s}\,, \quad \quad s\in \,, \] and Bernoulli numbers. The result supplements the known theorems of C. Leudesdorf, N. Rama Rao and others. As the application it is obtained some connections between the sums $W(m,s)$ and Agoh’s functions, Wilson quotients, the indices irregularity of Bernoulli numbers.
Classification : 11A07, 11B68
Keywords: Wolstenholme-Leudesdorf theorem; p-integer number; Bernoulli number; Wilson quotient; irregular prime number
@article{ARM_1999__35_4_a1,
     author = {Slavutskii, I. Sh.},
     title = {Leudesdorf's theorem and {Bernoulli} numbers},
     journal = {Archivum mathematicum},
     pages = {299--303},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {1999},
     mrnumber = {1744517},
     zbl = {1053.11003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1999__35_4_a1/}
}
TY  - JOUR
AU  - Slavutskii, I. Sh.
TI  - Leudesdorf's theorem and Bernoulli numbers
JO  - Archivum mathematicum
PY  - 1999
SP  - 299
EP  - 303
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1999__35_4_a1/
LA  - en
ID  - ARM_1999__35_4_a1
ER  - 
%0 Journal Article
%A Slavutskii, I. Sh.
%T Leudesdorf's theorem and Bernoulli numbers
%J Archivum mathematicum
%D 1999
%P 299-303
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1999__35_4_a1/
%G en
%F ARM_1999__35_4_a1
Slavutskii, I. Sh. Leudesdorf's theorem and Bernoulli numbers. Archivum mathematicum, Tome 35 (1999) no. 4, pp. 299-303. http://geodesic.mathdoc.fr/item/ARM_1999__35_4_a1/