Stability of quadratic interpolation polynomials in vertices of triangles without obtuse angles
Archivum mathematicum, Tome 35 (1999) no. 4, pp. 285-297.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An explicit description of the basic Lagrange polynomials in two variables related to a six-tuple $a^1,\dots ,a^6$ of nodes is presented. Stability of the related Lagrange interpolation is proved under the following assumption: $a^1,\dots ,a^6$ are the vertices of triangles $T_1,\dots ,T_4$ without obtuse inner angles such that $T_1$ has one side common with $T_j$ for $j=2,3,4$.
Classification : 41A05, 41A10, 41A63, 65D05
Keywords: quadratic Lagrange interpolation in 2D; stability
@article{ARM_1999__35_4_a0,
     author = {Dal{\'\i}k, Josef},
     title = {Stability of quadratic interpolation polynomials in vertices of triangles without obtuse angles},
     journal = {Archivum mathematicum},
     pages = {285--297},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {1999},
     mrnumber = {1744516},
     zbl = {1051.41002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1999__35_4_a0/}
}
TY  - JOUR
AU  - Dalík, Josef
TI  - Stability of quadratic interpolation polynomials in vertices of triangles without obtuse angles
JO  - Archivum mathematicum
PY  - 1999
SP  - 285
EP  - 297
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1999__35_4_a0/
LA  - en
ID  - ARM_1999__35_4_a0
ER  - 
%0 Journal Article
%A Dalík, Josef
%T Stability of quadratic interpolation polynomials in vertices of triangles without obtuse angles
%J Archivum mathematicum
%D 1999
%P 285-297
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1999__35_4_a0/
%G en
%F ARM_1999__35_4_a0
Dalík, Josef. Stability of quadratic interpolation polynomials in vertices of triangles without obtuse angles. Archivum mathematicum, Tome 35 (1999) no. 4, pp. 285-297. http://geodesic.mathdoc.fr/item/ARM_1999__35_4_a0/