On asymptotic decaying solutions for a class of second order differential equations
Archivum mathematicum, Tome 35 (1999) no. 3, pp. 275-284.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The author considers the quasilinear differential equations \begin{gather} \left(r(t)\varphi (x^{\prime })\right)^{\prime }+ q(t)f(x)=0\,,\quad \quad t\ge a\\ \multicolumn{2}{l}{\text{and}}\\ \left(r(t)\varphi (x^{\prime })\right)^{\prime } + F(t,x)=\pm g(t)\,,\quad \quad t\ge a\,. \end{gather} By means of topological tools there are established conditions ensuring the existence of nonnegative asymptotic decaying solutions of these equations.
Classification : 34C11, 34D05
Keywords: nonoscillatory behavior; asymptotic decaying nonnegative solutions; fixed point theorem
@article{ARM_1999__35_3_a6,
     author = {Matucci, Serena},
     title = {On asymptotic decaying solutions for a class of second order differential equations},
     journal = {Archivum mathematicum},
     pages = {275--284},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {1999},
     mrnumber = {1725843},
     zbl = {1048.34088},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1999__35_3_a6/}
}
TY  - JOUR
AU  - Matucci, Serena
TI  - On asymptotic decaying solutions for a class of second order differential equations
JO  - Archivum mathematicum
PY  - 1999
SP  - 275
EP  - 284
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1999__35_3_a6/
LA  - en
ID  - ARM_1999__35_3_a6
ER  - 
%0 Journal Article
%A Matucci, Serena
%T On asymptotic decaying solutions for a class of second order differential equations
%J Archivum mathematicum
%D 1999
%P 275-284
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1999__35_3_a6/
%G en
%F ARM_1999__35_3_a6
Matucci, Serena. On asymptotic decaying solutions for a class of second order differential equations. Archivum mathematicum, Tome 35 (1999) no. 3, pp. 275-284. http://geodesic.mathdoc.fr/item/ARM_1999__35_3_a6/