Self-duality and pointwise Osserman manifolds
Archivum mathematicum, Tome 35 (1999) no. 3, pp. 193-201
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
This paper is a contribution to the mathematical modelling of the hump effect. We present a mathematical study (existence, homogenization) of a Hamilton-Jacobi problem which represents the propagation of a front f$ $lame in a striated media.
Classification :
53B30, 53C50
Keywords: Hump effect; striated media; homogenization; viscosity solution
Keywords: Hump effect; striated media; homogenization; viscosity solution
@article{ARM_1999__35_3_a0,
author = {Alekseevsky, Dmitry and Bla\v{z}i\'c, Novica and Bokan, Neda and Raki\'c, Zoran},
title = {Self-duality and pointwise {Osserman} manifolds},
journal = {Archivum mathematicum},
pages = {193--201},
publisher = {mathdoc},
volume = {35},
number = {3},
year = {1999},
mrnumber = {1725837},
zbl = {1054.53082},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1999__35_3_a0/}
}
TY - JOUR AU - Alekseevsky, Dmitry AU - Blažić, Novica AU - Bokan, Neda AU - Rakić, Zoran TI - Self-duality and pointwise Osserman manifolds JO - Archivum mathematicum PY - 1999 SP - 193 EP - 201 VL - 35 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_1999__35_3_a0/ LA - en ID - ARM_1999__35_3_a0 ER -
Alekseevsky, Dmitry; Blažić, Novica; Bokan, Neda; Rakić, Zoran. Self-duality and pointwise Osserman manifolds. Archivum mathematicum, Tome 35 (1999) no. 3, pp. 193-201. http://geodesic.mathdoc.fr/item/ARM_1999__35_3_a0/