Self-duality and pointwise Osserman manifolds
Archivum mathematicum, Tome 35 (1999) no. 3, pp. 193-201.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper is a contribution to the mathematical modelling of the hump effect. We present a mathematical study (existence, homogenization) of a Hamilton-Jacobi problem which represents the propagation of a front f$ $lame in a striated media.
Classification : 53B30, 53C50
Keywords: Hump effect; striated media; homogenization; viscosity solution
@article{ARM_1999__35_3_a0,
     author = {Alekseevsky, Dmitry and Bla\v{z}i\'c, Novica and Bokan, Neda and Raki\'c, Zoran},
     title = {Self-duality and pointwise {Osserman} manifolds},
     journal = {Archivum mathematicum},
     pages = {193--201},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {1999},
     mrnumber = {1725837},
     zbl = {1054.53082},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1999__35_3_a0/}
}
TY  - JOUR
AU  - Alekseevsky, Dmitry
AU  - Blažić, Novica
AU  - Bokan, Neda
AU  - Rakić, Zoran
TI  - Self-duality and pointwise Osserman manifolds
JO  - Archivum mathematicum
PY  - 1999
SP  - 193
EP  - 201
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1999__35_3_a0/
LA  - en
ID  - ARM_1999__35_3_a0
ER  - 
%0 Journal Article
%A Alekseevsky, Dmitry
%A Blažić, Novica
%A Bokan, Neda
%A Rakić, Zoran
%T Self-duality and pointwise Osserman manifolds
%J Archivum mathematicum
%D 1999
%P 193-201
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1999__35_3_a0/
%G en
%F ARM_1999__35_3_a0
Alekseevsky, Dmitry; Blažić, Novica; Bokan, Neda; Rakić, Zoran. Self-duality and pointwise Osserman manifolds. Archivum mathematicum, Tome 35 (1999) no. 3, pp. 193-201. http://geodesic.mathdoc.fr/item/ARM_1999__35_3_a0/