Riemannian manifolds in which certain curvature operator has constant eigenvalues along each helix
Archivum mathematicum, Tome 35 (1999) no. 2, pp. 129-140.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Riemannian manifolds for which a natural skew-symmetric curvature operator has constant eigenvalues on helices are studied. A local classification in dimension three is given. In the three dimensional case one gets all locally symmetric spaces and all Riemannian manifolds with the constant principal Ricci curvatures $r_1 = r_2 = 0, r_3 \ne 0$, which are not locally homogeneous, in general.
Classification : 53C15, 53C20, 53C21, 53C22
Keywords: helix; constant eigenvalues of the curvature operator; locally symmetric spaces; curvature homogeneous spaces
@article{ARM_1999__35_2_a3,
     author = {Alexieva, Yana and Ivanov, Stefan},
     title = {Riemannian manifolds in which certain curvature operator has constant eigenvalues along each helix},
     journal = {Archivum mathematicum},
     pages = {129--140},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1999},
     mrnumber = {1711665},
     zbl = {1054.53058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1999__35_2_a3/}
}
TY  - JOUR
AU  - Alexieva, Yana
AU  - Ivanov, Stefan
TI  - Riemannian manifolds in which certain curvature operator has constant eigenvalues along each helix
JO  - Archivum mathematicum
PY  - 1999
SP  - 129
EP  - 140
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1999__35_2_a3/
LA  - en
ID  - ARM_1999__35_2_a3
ER  - 
%0 Journal Article
%A Alexieva, Yana
%A Ivanov, Stefan
%T Riemannian manifolds in which certain curvature operator has constant eigenvalues along each helix
%J Archivum mathematicum
%D 1999
%P 129-140
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1999__35_2_a3/
%G en
%F ARM_1999__35_2_a3
Alexieva, Yana; Ivanov, Stefan. Riemannian manifolds in which certain curvature operator has constant eigenvalues along each helix. Archivum mathematicum, Tome 35 (1999) no. 2, pp. 129-140. http://geodesic.mathdoc.fr/item/ARM_1999__35_2_a3/