A pointwise inequality in submanifold theory
Archivum mathematicum, Tome 35 (1999) no. 2, pp. 115-128.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We obtain a pointwise inequality valid for all submanifolds $M^n$ of all real space forms $N^{n+2}(c)$ with $n\ge 2$ and with codimension two, relating its main scalar invariants, namely, its scalar curvature from the intrinsic geometry of $M^n$, and its squared mean curvature and its scalar normal curvature from the extrinsic geometry of $M^n$ in $N^m(c)$.
Classification : 53C40
Keywords: submanofolds of real space froms; scalar curvature; normal curvature; mean curvature; inequality
@article{ARM_1999__35_2_a2,
     author = {De Smet, P. J. and Dillen, F. and Verstraelen, L. and Vrancken, L.},
     title = {A pointwise inequality in submanifold theory},
     journal = {Archivum mathematicum},
     pages = {115--128},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1999},
     mrnumber = {1711669},
     zbl = {1054.53075},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1999__35_2_a2/}
}
TY  - JOUR
AU  - De Smet, P. J.
AU  - Dillen, F.
AU  - Verstraelen, L.
AU  - Vrancken, L.
TI  - A pointwise inequality in submanifold theory
JO  - Archivum mathematicum
PY  - 1999
SP  - 115
EP  - 128
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1999__35_2_a2/
LA  - en
ID  - ARM_1999__35_2_a2
ER  - 
%0 Journal Article
%A De Smet, P. J.
%A Dillen, F.
%A Verstraelen, L.
%A Vrancken, L.
%T A pointwise inequality in submanifold theory
%J Archivum mathematicum
%D 1999
%P 115-128
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1999__35_2_a2/
%G en
%F ARM_1999__35_2_a2
De Smet, P. J.; Dillen, F.; Verstraelen, L.; Vrancken, L. A pointwise inequality in submanifold theory. Archivum mathematicum, Tome 35 (1999) no. 2, pp. 115-128. http://geodesic.mathdoc.fr/item/ARM_1999__35_2_a2/